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CHAPTER 1. INTRODUCTION

1.1 Overview

Reverse logistics is defined as “the process of moving goods from their typical
final destination to another point, for the purpose of capturing values otherwise unavailable,
or for the proper disposal of the product” (The Reverse Logistics Executive Council, 2002).
Reverse logistics is considered an environmental friendly practice because it involves
activities such as reuse, refurbishment, and recycling while diverting material from landfills
(Guide and Van Wassenhove, 2001). Gungor and Gupta (1999) classified these options into
two major categories: recycling and remanufacturing. Recycling is “a process of
disassembling a product to material level, sorting the materials, and transforming them into a
reusable form”, while remanufacturing is “an industrial process in which worn-out products
are restored to like-new condition. Through a series of industrial processes in a factory
environment, a discarded product is disassembled. Only usable parts are cleaned, refurbished,
and put into inventory. Then the new product is reassembled from old, and where necessary,
new parts to produce a unit fully equivalent — and sometimes superior — in performance and
expected lifetime to the original new product” (Lund, 1984). Furthermore, sustainable
development is achieved when choosing the reverse logistics as a channel to allow the
obsolete product including end-of use and end-of-life to be reused and processed. Goggin and
Browne (2000) suggested, “sustainable development promotes the sustaining of resources

input to a product so as to gain maximum benefit from these already consumed resources”.



Surprisingly, despite acquiring reusable material from recycling, this process also
requires a lot of resources so that the small profit it generates makes it not viable. As a result,
remanufacturing practice is more desirable because it reduces material procurement cost and
consumes fewer natural resources so that it is feasible to generate a significant profit from the
recovery process (Ritchy et al, 2001).

Currently, remanufacturing electronics is becoming more prevalent and there are a
variety of products involving a recovery process; e..g., single-use cameras, PCs, copy
machines etc. Generally, reusable parts that are still working from returns will be reused as
input for new products in order to minimize procurement cost for new material. Grenchus et
al. (2000) discussed an opportunity to recover value from used PCs. They suggested that
some components taken from returned PCs can be used as a parts for other older computers
that are still in service due to the fact that near the end of product life, when parts are no
longer manufactured, then repair parts are rare and sold at a higher price.

Firms involved in remanufacturing may be either the original equipment
manufacturer (OEM) or a third party company that works on value-added recovery (de Brito
et al., 2002). The third party company is a specialized company that works on collecting
returns or it could be just retailers who collect returns from customer directly. They might
either recover valuable material in house or just distribute returns back to OEMs. Generally
products are returned because they do not work properly or they do not meet the customer’s
needs (de Brito et al, 2002).

However, one of the characteristics that complicate the remanufacturing process is the
problem of uncertainty in timing and quantity of returns (Guide et al, 2000). More

specifically, it can be difficult or impossible to predict which product and how many will be



returned in the future. We can find a wide range of examples of this problem in numerous
industries; e.g., reusable beverage containers, disposable camera, batteries, toner cartridges,
computers, and automobiles. Forecasting returned products in a remanufacturing
environment is a process of estimating future product availability by observing past and
current sales along with early returns, in order to facilitate the management of
remanufacturing operations.

As mentioned earlier, forecasting the returns has been the subject of study for a
variety of products; however, the application to electronic goods has been limited and needed

to be explored in more detail.

1.2 Electronics recycling

Recently not only the OEMs but also third party recycling companies have faced a
new challenge to deal with the enormous amount of returned products from the end users
(Lee et al, 2002). This situation happens because of different reasons; e.g., OEMs want to
comply with environmental restrictions or want to promote their concern about sustainable
development, or just desire to take a benefit from material recovery of used products.
Besides, on average the typical return rate for all products in the U.S. is about 6%; while for
some leading electronic brands the average return is about 8.46% (Lee et al, 2002). This
could be due to rapid advances in technological innovation; recently the useful life of
electronic products has been considerably decreased. The National Safety Council (NSC)

reported in 1999 that the average lifespan of a personal computer (PC), which was 4.5 years



in year 1992 would be reduced to only 2 years in 2005, estimating that more than 315 million
PCs would be obsolete by 2004. This report has been confirmed lately by Grenchus et al.
(2002), who stated that “the useful life of PC has dropped to between 2 and 3 years”.

Dumping outmoded electronic products in a landfill is impractical since the natural
resources for building new landfills are becoming exhausted and the returned volume is
enormous. In addition, to simply leave an obsolete product in a landfill is not safe to the
environment because there is a possibility that a poisonous chemical will leach out into
ground water and soil. This environmental impact is the cause of a new environmental
mandate that requires a firm located in the European Union to initiate an operation to take
back their product after it becomes obsolete.

As mentioned above, material recovery is a desired alternative for used electronic
components in order to minimize the environmental impact. Numerous studies have claimed
that recoverable manufacturing or remanufacturing can lead to the goal of sustainable
development and this activity is also considered as a value-added business process. Guide
and Van Wassenhove (2001) suggested that there is a high potential for reuse of products in
the consumer electronic market. This reuse operation generates over 53 billion dollars in the
total sales per year and is estimated to reduce the manufacturing cost of a new product by 60
to 80% (Guide et al, 2000). There are several ways to recapture asset value from the
recovered products:

- Sell via outlet: Several manufacturers have opened outlet stores across the country

to sell off returns because this alternative has been proved to provide a better

margin than simply selling to a retailer (Roger and Tibben-Lembke, 1999)



- Sell to secondary markets: Firms in this category; e.g., liquidators, wholesalers,
etc, sell products at low prices (Roger and Tibben-Lembke, 1999)
- Remanufacture or refurbish: To conserve the product identity by repairing the
item into a new condition, especially prevalent in electronic and appliance
industries (Fleischmann et al, 1997)
- Auction in the internet: The payment to an internet auctioneer is smaller than the
cost of shipping the products back and disposing of them (Richardson, 2001)
Recently several leading electronic companies have initiated a material recovery from
product takeback; e.g., Hewlett Packard, Kodak, IBM, Dell etc. HP started its product
takeback (PTB) program to allow either business or individual consumers around the world
to return used toner-cartridges with no charge (Degher, 2002). Kodak has a worldwide
extensive program to reclaim single-use cameras from customers (Degher, 2002). IBM and
Dell Corporations have a channel for customers to turn in old PCs on an exchange program.
Even with large quantities of returns, the variability of returns with respect to timing
and quantity also impedes the effective management of remanufacturing operations. With
this uncertainty additional resources must be available to buffer against an irregular stream,
for example, additional space for inventory, labor, and machines; therefore, planning and
control in reverse logistics in remanufacturing is difficult (Kokkinaki et al, 2000). Even
though there are several factors that affect the estimating of electronic returns, with the
leading technology improvement we can forecast the returns from detailed information by
keeping track of individual returns. We can identify each item’s movement by relying on
techniques such as low-cost radio frequency tags (Kokkinaki et al, 2000). Saar and Thomas

(2002) discussed the benefit of these tags, which can give the detailed tracking information



of recycling products. With the current price of radio frequercy tags less than $1 each, it is
feasible to use them to track the recycling patterns of various products. When the individual
product arrives at the recycling plant then valuable information related to return flows would
be obtainable and this information could be applied for a better production planning of
recycling process. Brockman (1999) envisioned that warehousing in the 21% century would
be likely to have bar coding and radio frequency as powerful tools to record real time data
automatically. In a survey conducted on reverse logistics, Rogers and Tibben-Lembke (1999)
also found that these tracking devices have already been installed or are planned to assist

reverse logistic processes.

1.3 Problem statement

Generally, dealing with returned items is hard because timing and quantity of returns
are difficult to predict. To help overcome this problem we can utilize the information from
early returns for making decisions about managing remanufacturing activities in a profitable
way. This work intends to represent a real situation from the viewpoint of an OEM who tries
to manage returns from the market. Mainly an OEM perceives only the time at which each
item was sold but does not know when an item will be returned; consequently, it is
imperative to utilize data gathered from early returns to determine essential information on
potential returns in the future such as the distribution of return times, the mean time that an
item will be returned, and the proportion of items that will be returned before they become
unprofitable for remanufacturing.

This information not only facilitates planning activities for remanufacturing but it also can be

used to determine the viability of remanufacturing for that particular item.



By using the information obtained from tracking the movements of individual items
(when each item is sold and returned), we should have the ability to estimate timing and
quantity of returns with accuracy. With all mentioned above, this research utilizes the benefit

of information from previous sales and earlier returns and applies this information to forecast

the future availability of returned items.

1.4 Research objective

The purpose of this thesis is to explore a method of forecasting the returns in an
electronic remanufacturing environment. The formulated model assumes that information
about each individual item’s movement is obtainable; in other words, we assume that
information related to when an item was sold and when the same item is returned is
available. We investigate how the predictability of future returns changes with variability in
sales times and the mean time of return, how prior knowledge of the return time distribution
contributes to the precision of estimates, and how these estimates improve as more actual
returns arrive.

In this research we propose an idea for estimating necessary parameters for the
distribution of the time until electronic goods are returned. A maximum likelihood method
for censored data is used repetitively to estimate the parameters as more returns are collected.

The results of this study could be useful for obtaining more insight about the returns
and in order to make better decisions about managing operations in remanufacturing
environment. Finally, this thesis is especially relevant to the electronic goods, which have a
fairly short useful life of approximately between 2 to 4 years, due to rapid turnover of

technological advances.



1.5 Thesis organization

The remainder of this thesis is organized into 5 chapters. Chapter 2 reviews the past
literature relevant to forecasting product returns. Chapter 3 describes the statistical model for
a gamma distribution with censored data and includes the maximum likelihood estimation
concept. Chapter 4 shows numerical examples that illustrate the implementation of the

model. Finally, Chapter 5 presents concluding remarks and future work.



CHAPTER 2. LITERATURE REVIEW

2.1 Overview

The major frameworks that have been proposed to cope with returned products can be
characterized into several groups (Guide et al, 2000). This research will focus on the
problem of uncertainty in timing and quantity of returns. Uncertainty in either timing or
quantity of returned products impedes good management in procurement decisions, capacity
planning and disposal planning (Toktay et al, 2000). Typically the main issue is that the
pattern of the return stream is hard to predict and there are several factors that affect the
return process, for example computers that are used by business organizations have a useful
life of two to three years but conversely individual or household computers might rather last

for over 10 years before they might be considered lost, and never to be returned (Grenchus,

2000).

2.2 Returns forecasting

Goh and Varaprasad (1986) determined the reusable-container movement parameters,
€.g., the total number of trips made by a container in its lifetime, the average trip duration
starting from issuing from the plant and ending upon return to the plant, container life, and
the container loss rate. They modeled the returns of reusable containers as proportion of sales
volume from present and all earlier returns. Finally they applied the Box and Jenkins

statistical approach to estimate those necessary parameters.
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Kelle and Silver (1989a, 1989b) developed a forecasting method to estimate the
returns of reusable container such as for beverage and liquid gases, based on a variety of
available information, e.g., only the proportion of containers returned, the actual issues
during each previous period, with records of individuals issued and returned for each period,
and the total amount of returns in each previous period without individual identification.
They observed the forecast error for each available information case and also suggested that
in the case where individual information is known, a substantial improvement of estimating
could be achieved; however, this kind of information is very expensive or even impossible to
obtain.

Krupp (1992) presented an algorithm to determine the total number of obsolete
products that are expected to exist after the end of the product life cycle. His model assumed
an environment in which the customer purchases a remanufactured item but the customer
may not be required to return the same item for each individual sale.

Srivastava and Guide (1995) proposed two-step approaches to forecast both used
product availability and material recovery rates from returns. They suggested that the market
growth curve or product life cycle curve can be employed to provide an estimate about used
product availability and that the material recovery rate also follows an inverse relationship
with used product availability, e.g., as product life-cycle increases, more used productS will
be available but there is less product recovery due to the wear and tear in products.

Hess and Mayhew (1997) considered the merchandise returns problem and offered
both a split adjusted hazard model and a regression model with logit split to estimate the
return timing. They explained that the split hazard model, commonly used in the

measurement of reliability, uses all of the observations (information from returned and
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nonreturned), unlike a split regression model that uses only data from returned items, so that
a split hazard model can explain not only the timing but also the probability of return. The
results showed that the hazard model is more robust and offers a better estimation than the
regression model using observations of actual returns from an apparel data set.

Toktay et al. (2000) studied the returns forecasting problem from data on single-use
cameras obtained from Kodak. They modeled the return flow with a geometrically
distributed lag between sales and return and the data considered as right-censored (more
detail about right-censoring will be discussed in the next chapter). A Bayesian approach and
the Expectation Maximization (EM) algorithm, a way of doing maximum likelihood
estimation, are used to estimate the probability that a product will be returned and the
probability that a sold item is returned in the next period given that it will be returned. Two
information structures, aggregate and individual tracking data, are considered. In this case,
the aggregate data are taken from the volumes of sales and returns in each interval and
individual tracking data means the observations are acquired from individual product
movements so that we can determine how long each item has spent in the market after being
sold. The result showed that the EM algorithm dominates Bayesian estimation even with
only a few data available. Finally they suggested that when the demand for remanufacturing
is low, using individual tracking data is more favorable; on the other hand, if demand is
relatively high, less or only aggregate information is sufficient for the estimation.

In this thesis we extend the idea of tracking individual product movements and apply
it to electronic product returns to estimate necessary parameters of future returns with
confidence intervals. The predictability is evaluated for different amounts of variability in the

sales time and varying expected time to return.
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CHAPTER 3. STATISTICAL MODEL

3.1 Introduction

Solomon et al. (2000) described the distribution of electronic product sales over time
as following a bell-shaped curve and characterized it into five phases: introduction, growth,
maturity, decline, and obsolescence. De Brito et al. (2001) studied the distribution of the
returns by analyzing real data. They suggested that the time to return of an item could be
modeled by a negative exponential distribution. Toktay et al. (2000) explored the returns
from data on single-use cameras obtained from Kodak and modeled the time to return with a
discrete time distributed lag model using geometric and pascal distributions. In our model
we consider two random variables: (1) time to sale of an individual unit, for example an
individual PC, from when the product; e.g., Pentium 4, is introduced to the market, and (2)
time from sales to return of each unit. We choose the gamma distribution to represent both
random variables. The shape and scale parameter are @ and S respectively. Varying the
shape parameter allows the density function to take on a variety of shapes. Figure 1
illustrates probability density functions for gamma distribution different values of « but the
same . The scale parameter determines how stretched out the distribution is. The greater
the magnitude, the greater the stretching horizontally and compressing in vertically. Figure
2 illustrates probability density functions for the gamma distribution with a constant @ and
different values of . The flexibility in the shape of the gamma distribution has made it
possible to model a wide variety of distributional shapes unlike other distributions such as

normal that has a fixed shape. In addition, the gamma distribution with a large shape
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parameter can be used to approximate a normal probability density curve. However, unlike a
normal random variable, a gamma random variable can take on only nonnegative values,
which make it more suitable to model for time intervals. It has a reproductive property,
which states that sum of two independent gamma distributed random variables with possibly
different shape parameters (a',a") but with common values of the scale parameter (43) also
has a gamma distribution with the same value of # and with @ =a’+a" (Johnson et al,
1994, p 340).

We forecast the parameters of the product return distribution using maximum
likelihood estimation (MLE) for the gamma distribution with censored observations and
extend this estimation framework to determine the confidence intervals for estimated
parameters such as the shape and scale parameters, the mean and a cumulative probability.
We assume that all items will be returned eventually. The method is illustrated under two
scenarios. In the first scenario, we assume that the return time distribution has a known
common scale parameter for sales and distribution of time to return. In the second scenario,
the method is applied to a situation when information related to the scale parameter could

not be acquired.
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2 4 6 8 10 12 14

Figure 1. Probability density for gamma distributions with o= 0.5,1,1.5,2,4 and f=2.
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Figure 2. Probability density for gamma distributions with =4 and f=2,34,5

3.1.1 Notations

The following describes notations used in this thesis.

i : Index number of products (i =1,2,...., n)
] : Index number of censoring time period
Y, ; :Time to sale of unit i from when the product is introduced to the market

Y,i :Time from sale to return of unit i
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T; : Total time until the return of uniti ( Ti=Y,; + Y2,i)
S; : Censoring times

Y;; =Min( T;, S;): Observation of T; at censoring time S;

D; : Set of uncensored data at time S, D; = {i: T; < §;}

G : Set of censored data at time S;, Cj= {i: T;> S;}

To : Time before the product is worthless starting from product introduction to the
market

yij : Scale parameter

a, : Shape parameter for sales distribution

a, : Shape parameter for distribution of time from unit sale to return

a,=a,+a,

&, B :MLEof a,f
R(a,, B)= P(T, <T,): Probability that unit i will be returned before time Ty

0 : True value of parameter

0 : MLE of 6

3.2 Product return model
3.2.1 Time to sale distribution

We assume that {Yu = 1,...,n} are independent and identically distributed random
variables having a common gamma distribution with parameter «, and £, which is denoted

as Y, ~ iid gamma (a,, B). That is, the probability density function of Y, fori=1,.,n,is
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1 a-i Yy
fOe, ) =——» exp(7),0 <y (1)

B T(a)

where I' () is the gamma function defined as,
F(z) = Iu"le'"du ,0<z 2)
0

The shape parameter is denoted by « and the scale parameter is denoted by 5 .

With this parameterization of the gamma distribution, the mean and variance are given as

The variability in the distribution may be measured by the coefficient of variation (C.V.) .

The C.V. is defined as a ratio of standard deviation to its mean, which is equal to — for

Ja
gamma distribution. From this we can say that the higher the C.V., the higher the variability
relative to location, and the lower the C.V., the higher is the consistency of the data or the
lower the variability relative to location. To follow a bell-shaped curve of the sales
distribution of electronic products (Solomon et al., 2000), in our model, the time to sales of
unit i (Y}, ;) is assumed to follow a gamma distribution (o4, 8) with a large shape parameter

oy, which makes the curve similar to normal shape.

3.2.2 Time from sales to return
The times from sale to return of unit 1 {Yz,,. = l,...,n} or the times the units spend
with the customer, are iid gamma (az, ,B) random variables with the same value of the scale

parameter as for {}’Li}, which Y, ; is independent of Y.

i
)



17

3.2.3 Return time distribution

Let T, :i =1,...,n denote the time at which unit i is returned, where time 0 represents
product introduction: T; =Y,;+Y,;,i=1,...,n. The reproductive property of the gamma
distribution with common parameter f (Johnson et al, 1994, p 340) implies that
{T,. Q= 1,...,n} are independent and identically distributed gamma random variables with
parameters (¢, +a2) and .

We analyze the return data in each time period as incomplete observations.
Generally “missing or censored data occurs when some individual data may not be observed
for the full time. Therefore only a portion of the individual time is known and the remainder
of the time is observed merely to exceed a certain time value” (Cox et al, 1984). Suppose
that S, a censoring time, is a period of observation such that observation on the individual
ceases at S if its return time has not occurred by then (using notation from Lawless, 1982).

Let Y;; be the observed return time of product i at censoring time S;

Yij=Min (T;, Sj) (3)
If7; <§,, item i is an uncensored datum and if Ti > §;, item i is a censored

datum.

Let D, = {i I, <S j} be the set of indices for uncensored data and C; = {i I, >8 j} be the

set of indices for censored data at time S;.

In our model, usually the exact numbers of the censored items or observations at
different censoring times are not known in advance; on the other hand, we can identify just
the numbers that are greater than or equal to censoring times. We refer to these observations

as Type I censoring at S; (Lawless, 1982). This type of censoring results in what are also
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called “right-censored” data, which implies that if the event of interest is to the right of the
censoring time then it will be excluded from analysis. Therefore, we have both the set of
individuals for whom lifetimes are observed (D;) and the set of individuals for whom only

censoring times are available (C)).

1 | | | | b
| [ ! | I E I Censoring
S1 Sz S3 S4 Ss H Ss times
T1 5
Y11 | Y21 I |
T, :
Y12 i Y, 2 ’ 3
LT,
Y13 | Y, 3 |
! ! ! time
O i
Enters market T0

Figure 3. The simulated data and censoring periods
Figure 3 illustrates how we censor observations at different censoring times. At time
S, all individuals are censored, at time time S3 only the return time of unit 1 is observed and
units 2 and 3 are censored, and at time Ss units 1,2 have been returned but unit 3 is still

censored. In fact, unit 3 will not be returned until after the product is obsolete.
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3.2.4 Maximum likelihood function

We estimate the parameters with MLE for the gamma distribution with censored
data. This statistical technique is well known and has been extensively used in the field of
engineering, reliability, and applied statistics to fit parametric distributions when partial
observations are collected. For a particular censoring time, S, we have both sets of observed

and censored data.

The likelihood function for a censored sample is:

.- ﬂréa3>(%J""‘ wiplnded] o

where Q(a —) = u*e

ﬁ
B

For computational convenience, it is more common to work with the log-likelihood

function instead of likelihood function itself. The logarithm of the likelihood (5) is called the

log-likelihood function. For a set of observed product return times such that |D| =rand

|C] = n —r the log likelihood may be written in terms of,

| =

1
Z and 7 =(HT,.)r as
ieD ieD
~ {
L(aa,ﬂ)=r[(aa -1 log(r) - a, 108(,3)—10g1"(a3)—-ﬂ—]+210g{ {aa, ’BH ()
ieC
where n denotes the total number of products sold, and r denotes the total number of

products returned so far.
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3.2.5 Parameter estimations

We use MLE to derive the estimators for scale and shape parameters. For our model
these values (0?, ,3 ) are not available in analytical form but must be found numerically. We
use the FindMinimum function in Mathematica (Wolfram, 1991, p 1135), which searches

for a local minimum. This function employs the Newton-Raphson method to search for local

values that maximize the log-likelihood function (Lawless 1982, appendix F).

3.2.6 Interval estimations
The technical conditions necessary for maximum likelihood estimates to be

asymptotically normal (AN) (Serfling, 1980) are met for our model (Lawless, 1982, p 525-

526). Thus, inference may be based on the fact that

(@.8)is av(e p) 121 ) ©
where I is the Fisher observed information in a random sample (see Appendix C).
Additionally, we also consider that a returned unit will be worthless after some
specific time T, after the product introduction. We determine the expected proportion of
used items returned before that time period in terms of probability, which we will discuss in

more detail later in this chapter.
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3.3 Estimating a single parameter
We assume in this case that we can obtain information from the sales data so that the
scale parameter () is known. The maximum likelihood function in this scenario is used

only to estimate the shape parameter. Thus, (5) can be written in the following form.

L(a,)= {(as ~1)log(t) - a, log(B) ~logI'(a;) - %} +y. log{Q{a3 ,%H 0

3.3.1 Parameter estimation

Setting the derivative of (7) with respect to «, equal to zero and solving for

a,yields the MLE «,. However, we employed the FindMinimum to search for local

minimum value automatically.

3.3.2 Interval estimation

-Parameters

The Fisher information is merely the observed information from «, since we assumed
that we know the [ value.

82
Thus, 1, (aS ) == oa.’ L(a:!) ®)
3

By the asymptotic normality of MLE (Appendix C), then @, is AN (a3 I (a3 ))

tot
We estimate V(a,) by V(d3)=——é—;—) so that a (1-¢)100% approximation interval for
tot 3
a,l1s

a7 i) ©
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where Z  represents a standard normal quartile.
1—

-Mean

We estimate E(Y,.)=a3 p by i=4,f. By the asymptotic normality and invariance

properties of MLE (Appendix C), g,(@,)=4,8 is MLE of g(a3)=a3,6 and

g(d,) <o and g'(@,)#0.

da,

By the Delta method (Appendix C)

g(@,) is A]\/(g(a3 ),[d—i—g(% )T 1_”'2;3_)}

2
so that &, is AN(a3,B,—’B—J.
Itot (a3 )

Then a(l - )100 % confidence interval for e, § is

. B’
a3ﬂ * Zl_z[ltor (a3 ):]

2

3.4 Estimating multiple parameters

(10)

(11)

(12)

This case applies to the second scenario in which we do not know the scale

parameter but we obtain only times that units are sold and returned from the field so that we

must estimate both scale and shape parameters. The log-likelihood function for this scenario

is identical to (5).

3.4.1 Parameter estimation:



23

The MLE of a,and pcan be obtained by using FindMinimum to search for the

optimal point of the log-likelihood function.
3.4.2 Interval estimation
-Parameters
The Fisher information for multiple parameters is utilized to find the estimated intervals

for parameters and mean. The Fisher observed information is:

o? 8?
2 L(as’ﬂ) L(aa’ﬂ)
I (@, )= % 0a0p (13)
T ) Zienp)
da,0p " opr

Corresponding with the asymptotic normality of MLE
(@, 8) is an((a, B) 15 (e 8)

or AN((as’ﬂ)’ V(as’ﬂ))’ V(as’ﬂ) = Imr_l (as’ﬂ)

-1,1 -1,2
Let -1 , = ! (a3’ﬂ) l (a3’ﬂ) . 14
et 1, (aa ﬁ) [il’z (a3,,3) ;22 (a3,,3) ( )
. . -1 A A il’l dg,;ﬁ il,z &35B
We estimate it as /,, (a3,,8)= iz, B) i &3”3 (15)
so the approximate (1—-¢)100% confidence intervals for a,, f are:
A aifs AW
Gtz , [11’1(0@,,3)}2 (16)
2
A . n ~\l/
pee [ola 5] o

-Mean
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We estimate E(Y;) = a,8 by [1=d3B. By invariance of MLE,gz(d3,B) is MLE for

g(a3,,3)= a,f
so that

E (Y) = glas, B).

Let
0, 5
D= {_g_z _&} (18)
oa, Of
and by the Delta method

glé,. ) or i is aN(g(as, ) DI, (a;, B)DT)

where DI} (a,, B)D can be written as
a,,B) i"la,,p {ﬂ] =|: V(i) cov(ﬁ,&):l
6;,8) *gs, B)|as] Leov(ay) V()

['3 . i
3 l-l,2
where V(ﬁ) represents the variance of /i (mean)

¥ (V) represents the variance of v (variance)

cov(f1,V) represents the covariance of frand V.

Hence a(1 - @) 100 % confidence interval for ép is

apxz [ (i) (19)
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3.5 Probability estimations

As mentioned earlier, it is imperative to estimate the proportion of units that will be
returned before they are not economical to reuse again. Applying probability concepts we
can estimate this quantity as a probability that unit 1 will be returned before time Ty or
P(T; <Ty). Thus

. ) ) T, 1 i Y :

a,,B)=P(T, <TO)—Jmt e/Pdt, (20)
T

R= —.——A—td’_le_l/ﬁdt . (1)
)

We estimate R(a;, f)with R so,

By the invariance property,

R(4,, B) is MLE for R(a;, B).

3.5.1 Estimating a single parameter

oa,

Since R(d,, ) is AN R(aa,ﬂ),K oR ) } 7 za ) (22)

then a (1-¢)100 % confidence interval for R is

(23)

where
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aai ] aar( {Jta”log(t)e/”dt—log(ﬂ fiore Pa - r(% Itarl /ﬂdt}

3.5.2 Estimating multiple parameters

EENe
8053 =G 8,3 a3=dy
p=p B=p
where
Ty
R___1 fe=e T a1 _[t"’" Tt
aﬁ ﬂ a3+21_.(a3) a,—]l—-(a:;

Corresponding to the Delta method,
Rla,,B)is an(R(a,, B).GI GT)

tot

where V(R)=GIZ'G".

Hence, a (1-¢)100% confidence interval for R is

Rez @) 24)
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CHAPTER 4. NUMERICAL EXAMPLES

In this chapter, the MLE presented in the previous chapter are demonstrated and the
performance of our point estimators is evaluated. There are two scenarios depending on the
prior knowledge of the return time distribution. Each scenario consists of six different cases
that describe the sale pattern of different types of products; e.g., high or low variability, and
different sources of returns; e.g., corporation or household use. We simulated distributions
according to the useful life of PC (Grenchus, 2002).

This work intends to explore the effects of: (1) different patterns of sale distributions,
(2) mean time to return from different return origins, and (3) the prior knowledge of the scale
parameter on predictability. We measure predictability in terms of the accuracy and

precision.

4.1 Factors

4.1.1 Sales distribution

We applied C.V.s of 0.5, 0.35, and 0.25 in the time to sale distribution. Assuming the
expected time until a unit is sold is 100, the scale parameters are chosen to equal 25,12.5, and
6.25 correspondingly. The various intensities of variability could represent several types of
products sales: Low variability means a product that is slow to gain popularity at the
introduction, then sells fast, but the acceptance diminishes shortly after peak in sales. High
variability represents a product that is successful in sales volume soon after it is introduced to

the market and its sales continue at a steady high for a long time before decreasing.
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Table 1. The parameters for time to sale distribution

C.V. Q B
0.500 4 25
0.354 8 12.5
0.250 16 6.25
f(}”al ) ﬁ)
y <~
7 N\
0.015 / \ Gama (16,6.25)
/ N Cv.02s
/
0.0125 // Gamm (8,12.5 )\
) \\
C.V.0.35 \
0.01 f \
\
Gama (4,25) / \
0.0075 C.V.0.5 \
/ \
/
/ X
0.005 } ,
! N
/ N\
0.0025 / N
/ ~N
/ N
// =
= . . 4 . L S .
25 50 75 100 125 150 time

Figure 4. Probability density functions of time to sale with different C.V. values

4.1.2 Time from sales to return
For each Y,; distribution we held scale parameters constant and selected shape
parameters for two different mean times to return according to the estimation that the useful

life of a PC is approximately 100 weeks for corporation and about 200 weeks for consumer

use (Grenchus, 2000).
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Table 2. The parameters for the distribution of the time from sales to return

a, Jij Mean
4 25 100
12.5 100
16 6.25 100
8 25 200
16 12.5 200
32 6.25 200

4.1.3 Lifetime distribution

By applying different variability in sales data and the two alternatives for mean time to

return, we can distinguish into 6 cases of lifetime data.

Table 3. The parameters for lifetime distribution

CV.of CV. of CV.of

Case @ v, M % A % L M B Ra,,p)
1 4 0500 100 4 0500 100 8 0.354 200 25 0.981
2 8 0354 100 8 0.354 100 16 0.250 200 12.5 0.998
3 16 0.250 100 16 0.250 100 32 0.177 200 6.25 0.999
4 4 0500 100 8 0354 200 12 0.289 300 25 0.815
5 8 0354 100 16 0.250 200 24 0.204 300 12.5 0.885
6 16 0.250 100 32 0.177 200 48 0.144 300 6.25 0.950

These six cases were used to study the effect of variability in lifetime data on predictability

of returns as more actual returns arrive. As we mentioned earlier, the first three cases are

attributed to products returned originally from corporation uses and last three cases simulate
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returned items from consumer use. A simulation model was developed in order to generate
data sets corresponding to different cases and estimate parameters by MLE for censored data.
The simulations were conducted in the Mathematica program (Wolfram, 1991). We used 100
replicates (each replicate represents 750 products (n = 750)) in the simulation. The censoring
times were chosen to be times 75,100,125...600, and 700 (j =1,....., 21). We assumed that an

item is worthless if returned after period 375 (To = 375).

g(t;a3,ﬂ)

0.008 1
0.006 1
0.004

0.002

100 200 300 ! 400 500 time

Figure 5. Probability density functions of lifetime distribution

A

The results represent the average over 100 replicates in each case. Note that Rand V(R) are

shown only for censoring times that are less than To = 375 and we record the true value of R
censoring after time 350 as the proportion of returns at time 375 to the number of products
that were sold (N = 750). Full numerical details for scenarios 1 and 2 including 90%

confidence intervals are shown in Appendix A and B.
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In order to evaluate the effects of: (1) variability in the distribution of time to sales,
(2) expected time to return, and (3) the prior knowledge about return characteristics on
predictability based on early returns, we examine our estimates in terms of accuracy and
precision by using the average over 100 replicates in each case as an estimate. To emphasize
early returns, we consider censoring times only up to time 300. With different mean time to
return, cases 1-3 have different starting points from cases 4-6; therefore we will consider
early returns from cases 1-3 at times 125-200 and cases 4-6 at times 200-300. Note that each
case has a different starting censoring time, for example, the first estimates for case 2 are
available at S, =100 because before this starting time a lot of items are still missing (more
than 99 % censored); as a result, the censoring times with so much missing data are not

considered, which we indicate with not available (n/a) in the tables.

4.2 Accuracy of estimation

Accuracy describes the closeness of the estimate to the true value. We measure the

accuracy by the deviation from the true value defined as

6-9
% error = ——x100%,
7]

such that @ is a true value, and 0 is an estimated value.

Scenario 1. Assuming prior knowledge of 3 is available

Tables 4-6 and Figures 6-8 illustrate the percent deviations from the true values for

&,, i, and R at different censoring times from the scenario 1 data. Note that in this case the
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percent deviations of £ have the same values as the percent deviations of &, because we fix

the 8 values. The results show that in the long run percent errors in &,,/, andR are

considerably low with little fluctuation. Cases 6 has higher error in &,and £ from the first

censoring time but this large error is due to only a few observations, which could occur in

other cases as well as we extend to earlier censoring times. The % errors in R are somewhat

more steady in cases 1-3 than in cases 4-6.

Table 4. Comparing % error in estimating &, for scenario 1

Ceilisrggng Casel Case2 Case3 Cased Case5 Caseb
75 4.795E-01 n/a n/a n/a n/a n/a
100 4.065E-01 1.593E+00 n/a n/a n/a n/a
125 2.331E-01 3.488E-01 5.384E-01 5.350E-01 n/a n/a
150 2.992E-01 1.525E-01 5.106E-01 5.250E-01 n/a n/a
175 3.855E-01 2.194E-01 3.609E-01 6.892E-01 8.067E-01 n/a
200 3.071E-01 1.087E-01 3.378E-01 3.033E-01 7.167E-02 2.636E+00
225 2.223E-01 5.313E-02 3.059E-01 5.025E-01 2.917E-03 7.152E-01
250 2.151E-01 6.187E-02 2.775E-01 2.650E-01 2.129E-01 3.333E-01
275 2.419E-01 9.188E-02 2.684E-01 2.750E-01 1.367E-01 2.202E-01
300 2.166E-01 6.187E-02 2.753E-01 2.592E-01 3.625E-02 1.237E-01

3
25

‘5 2

E s —e—Case 1 ——Case4

X 14 -#— Case 2 —%— Case5

051 % —4—Case3 ——Case6
o w1 s mm
Censoring time Censoring time

Figure 6. Comparisons of % error in estimating &, with different censoring times for

scenario 1
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Ce?isl.gzmg Casel Case2 Case3 Case4 Caseb Caseb
75 4.795E-01 n/a n/a n/a n/a n/a
100 4.065E-01 1.593E+00 n/a n/a n/a n/a
125 2.331E-01 3.487E-01 5.384E-01 5.350E-01 n/a n/a
150 2.993E-01 1.525E-01 5.106E-01 5.250E-01 n/a n/a
175 3.855E-01 2.194E-01 3.609E-01 6.892E-01 8.067E-01 n/a
200 3.071E-01 1.088E-01 3.378E-01 3.033E-01 7.167E-02 2.636E+00
225 2.223E-01 5.312E-02 3.059E-01 5.025E-01 2.917E-03  7.152E-01
250 2.151E-01 6.188E-02 2.775E-01 2.650E-01 2.129E-01 3.333E-01
275 2.419E-01 9.188E-02  2.684E-01 2.750E-01 1.367E-01 2.202E-01
300 2.166E-01 6.188E-02  2.753E-01 2.592E-01 3.625E-02 1.237E-01
3.0 3.0
25 4 2.5 4
5 2.0 A o T s 2.0 4
Ers ez |B s o
) 0:5 4 ‘E>j\_—‘ ——Case 3 ;z : —e—Case 6
0.0 - —— — : o alll
100 125 150 175 200 225 0.0175 2(;0 2;5 25;0 27‘5 300 325
Censoring time Censoring time

Figure 7. Comparisons of % error in estimating 4 with different censoring times for

scenario 1
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Table 6. Comparing % error in estimating R for scenario 1

Celtlisr;)lrgng Casel Case2 Case3 Case4 Case5 Case6
75 8.747E-02 n/a n/a n/a n/a n/a
100 6.069E-02  4.709E-02 n/a n/a n/a n/a
125 3.554E-02 7.314E-03 2.000E-04 7.726E-01 n/a n/a
150 4623E-02 1.002E-03 2.000E-04  7.159E-01 n/a n/a
175 5.346E-02 7.014E-04 1.000E-04 8.434E-01 3.230E-01 n/a
200 4.257E-02 4.509E-03 1.000E-04 3.615E-01 5.332E-01 7.246E-01
225 3.157E-02 3.807E-03 1.000E-04 5.887E-01 1.436E-01 1.614E-01
250 2963E-02 2.906E-03 1.000E-04 5.955E-01 4.315E-02 9.939E-02
275 3.259E-02 6.012E-04 1.000E-04 3.241E-01 2.790E-02 1.452E-01
300 2.963E-02 1.904E-03 1.000E-04  3.071E-01 1.668E-01 1.619E-01

3.0 3.0

2.5 4 254
E fg : —e—Case 1 E f: : - Case 4
prs 1:0 | —=—Case 2 " 1'0 | —%—Case 5

0.5 4 —a—Case 3 0:5 A —e—Case 6

0.0 A A A & 0.0 -

100 125 150 1756 200 225 175 200 225 250 275 300 325
Censoring time Censoring time

Figure 8. Comparisons of % error in estimating R with different censoring times for

scenario 1

Scenario 2. Assuming without prior knowledge of 3

Tables 7-10 and Figures 9-12 illustrate the percent deviations from the true values for
a,, B, i, and R at different censoring times from the scenario 2 data. The results show that
percent errors in every estimate tend to stay steady over time except case 3, which stays

around 10 % from the beginning and decreases to 6% at time 300. The errors in jand R are

considerably smaller compared to errors in @, and B.
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Ce‘t’i?g;mg Casel Case2 Case3 Cased Case5 Case6
75 7.996E+00 n/a n/a n/a n/a n/a
100 1.953E+00 2.811E+01 n/a n/a n/a n/a
125 4.629E+00 2.500E-03 2.894E+01 2.221E+01 n/a n/a
150 3.251E+00 1.289E+00 7.685E+00 1.891E+01 n/a n/a
175 1.043E+00 3.324E+00 8.448BE+00 1.573E+01 1.245E+01 n/a
200 1.982E+00 1.763E+00 8.793E+00 8.498E+00 8.551E+00 2.099E+00
225 2.462E+00 2.387E+00 9.030E+00 7.270E+00 3.609E+00 7.960E-01
250 2.506E+00 2.158E+00 9.169E+00 1.698E+00 1.859E+00 4.717E-01
275 3.395E+00 2.220E+00 9.199E+00 1.290E+00 1.917E-01 2.860E-01
300 2.765E+00 1.834E+00 6.219E+00 3.333E-02 1.496E-01 1.475E-01

35
2 %
N ——Caset| | 52 % Cased
20 i EZ}
; " o] | £ - Came5
5
i . 0 &i va— —¢- Casef
100 125 150 175 200 225 ™ a 5 = /S 1 1] 5
Censoring time Censcring time

Figure 9. Comparisons of % error in estimating ¢, with different censoring times for

scenario 2
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Table 8. Comparing % error in estimating ,{? for scenario 2

Ce?i?l;mg Casel Case2 Case3 Cased Case5 Case6b
75 2.155E+01 n/a n/a n/a n/a n/a
100 1.138E+01 8.088E+01 n/a n/a n/a n/a
125 1.282E+01 2.963E+00 1.003E+02 1.254E+01 n/a n/a
150 7.328E+00 2.402E+00 1.118E+01 1.138E+01 n/a n/a
175 4.828E+00 4.287E+00 1.135E+01 1.305E+01 3.823E+01 n/a
200 2.848E-01 1.973E+00 1.134E+01 7.868E+00 2.275E+01 3.252E+00
225 2.336E-01 2.472E+00 1.132E+01 7.034E+00 8.612E+00 1.335E+00
250 1.619E+00 2.255E+00 1.152E+01 1.840E+00 3.090E+00 1.049E+00
275 2.624E+00 2.289E+00 1.017E+01 1.321E+00 1.237E+00 7.166E-01
300 1.957E+00  1.882E+00  7.980E+00  2.504E-01  1.075E+00  5.958E-01
125 125
100 - | 100 A
[ 75 4 | —+—Case 1 13 75 - —»—Case 4
E ! -s—Case 2 E —*—Case 5
2 501 | —+—Case 3 32 50 —o—Case b
25 | 25 A
4 e 3 : : ! - %:.,_._._
100 125 150 175 200 225 175 200 225 250 275 300 325
Censoring time Censoring time

Figure 10. Comparisons of % error in estimating /3 with different censoring times for

scenario 2

Table 9. Comparing % error in estimating / for scenario 2

Cegs;;mg Casel Case2 Case3 Case4 Case5 Case6
75 3.127E+01 n/a n/a n/a n/a n/a
100 9.206E+00 3.004E+01 n/a n/a n/a n/a
125 7.599E+00 2.961E+00 4.229E+01 6.882E+00 n/a n/a
150 3.839E+00 3.722E+00 2.633E+00 5.378E+00 n/a n/a
175 3.735E+00 8.210E-01 1.944E+00 6.342E-01 2.103E+01 n/a
200 1.692E+00 2.451E-01 1.546E+00 3.875E-02 1.226E+01 1.085E+00
225 2.223E+00 2.612E-02 1.267E+00 2.758E-01 4.692E+00 5.279E-01
250 8.469E-01 4904E-02 1.296E+00 1.733E-01 1.173E+00 5.723E-01
275 6.827E-01 1.799E-02 3.536E-02 4.824E-02 1.043E+00 4.285E-01
300 7.539E-01 1.271E-02 1.264E+00 2.838E-01 9.240E-01 4.474E-01
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Figure 11. Comparisons of % error in estimating £ with different censoring times for

scenario 2

Table 10. Comparing % error in estimating R for scenario 2

Cextl;:)}zmg Casel Case2 Case3 Cased Case5 Caseb
75 4.742E+00 n/a n/a n/a n/a n/a
100 1.504E+00 6.969E+00 n/a n/a n/a n/a
125 1.5632E+00 1.724E-01 4.297E+00 4.202E+00 n/a n/a
150 7.436E-01 2.488E-01 9.600E-03 4.450E+00 n/a n/a
175 5.270E-01 6.032E-02  7.500E-03 5.220E+00 1.434E+01 n/a
200 1.092E-01 2.395E-02 6.400E-03 3.136E+00 7.044E+00 1.113E+00
225 3.971E-03 2.224E-02 5.600E-03 2.891E+00 2.397E+00 5.039E-01
250 1.120E-02 2.054E-02 5.300E-03  9.342E-01 6.273E-01 5.132E-01
275 7.240E-02 1.974E-02 5.200E-03 8.093E-01 4.344E-01 3.754E-01
300 2.974E-02 1.603E-02 3.700E-03 3.430E-01 3.104E-01 3.794E-01
15 15
121 12 4
§ o =o=< K1 B oo S Case 4
; 6 “'hxi ; 6 —»—Case 5
—4— —e— Case 6
3 a
0 k‘—* + . G .
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Censoring time Censoring time

Figure 12. Comparisons of % error in estimating R with different censoring times for

scenario 2
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4.3 Precision of estimation

The precision can be described as the narrowness of the approximate confidence interval

)

width. Precision can be quantified by 5 x100, where V(A) denotes the vanance of an

estimate. We call this quantity the relative standard deviation (RSD) (National institute of

standards and technology, 2003).

Scenario 1. Assuming prior knowledge of § is available
Tables 11-13 and Figures 13-15 illustrate percent RSDs for &,, &, and R at different

censoring times for scenario 1. The findings show that every case has % RSDs decreasing in
the censoring time. In addition we can see that for the cases with higher variability of sale

distributions, the RSDs will converge to higher value in RSDs than the cases with lower

variability. However, RSDs in R behave differently and can be combined into two groups,
lower or higher mean time to return. The group with lower mean time to return has smaller
RSDs than the group with higher mean time to return. In addition, for both groups, the case

with higher C.V. also has higher RSDs than lower C.V. at the same censoring times.
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Celtlisrggng Casel Case2 Case3 Cased Case$5 Case6
75 3.883E+00 n/a n/a n/a n/a n/a
100 2.359E+00 3.569E+00 n/a n/a n/a n/a
125 1.788E+00 1.779E+00 2.418E+00 4.488E+00 n/a n/a
150 1.531E+00 1.261E+00 1.138E+00 2.745E+00 n/a n/a
175 1.399E+00 1.052E+00  8.049E-01 1.976E+00 2.735E+00 n/a
200 1.329E+00  9.620E-01 6.927E-01 1.569E+00 1.598E+00 2.258E+00
225 1.291E+00 9.253E-01 6.558E-01 1.358E+00 1.173E+00 1.113E+00
250 1.271E+00 9.087E-01 6.448E-01 1.233E+00 9.623E-01 7.762E-01
275 1.261E+00 9.017E-01 6.420E-01 1.150E+00 8.547E-01 6.293E-01
300 1.255E+00 8.994E-01 6.414E-01 1.103E+00  7.958E-01 5.661E-01

5.000

4.500 -

4.000 4 —o—Case 1

3.500 ——Case 2
a gggg —A—Case 3
:o 2:000 | —¢—Case 4

1.500 - —»¥%—Case 5

1.000 + —&—Case 6

0.500 -

0.000 x 1 T ,

75 125 175 225 275 325
Censoring time

Figure 13. Comparisons of % RSD in estimating ¢, with different censoring times for

scenario 1
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Ce?is;)llgng Casel Case2 Case3 Cased Case$d Caseb
75 3.883E+00 n/a n/a n/a n/a n/a
100 2.359E+00 3.569E+00 n/a n/a n/a n/a
125 1.788E+00 1.779E+00 2.418E+00 4.488E+00 n/a n/a
150 1.5631E+00 1.261E+00 1.138E+00 2.745E+00 n/a n/a
175 1.399E+00 1.052E+00 8.049E-01 1.976E+00 2.735E+00 n/a
200 1.329E+00 9.620E-01 6.927E-01 1.569E+00 1.598E+00 2.258E+00
225 1.291E+00 9.253E-01 6.558E-01 1.358E+00 1.173E+00 1.113E+00
250 1.271E+00 9.087E-01 6.448E-01 1.233E+00 9.623E-01 7.762E-01
275 1.261E+00 9.017E-01 6.420E-01 1.150E+00 8.547E-01 6.293E-01
300 1.255E+00 9.008E-01 6.414E-01 1.103E+00 7.958E-01 5.661E-01

5.000

4,500

4.000 & —e—Case 1

3.500 1 —a—Case 2
2 nggg 1 —A—Case 3
£ 2.000 A ——Case 4

1.500 + —x*—Case 5

1.000 1 —e—Case 6

0.500 A

0.000 T T Y r

75 125 175 225 275 325
Censoring time

Figure 14. Comparisons of % RSD in estimating 4 with different censoring times for

scenario 1
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Cer:is;ﬁx;ng Casel Case2 Case3 Case4 Case$5 Caseb
75 4.913E-01 n/a n/a n/a n/a n/a
100 2.868E-01  1.121E-01 n/a n/a n/a n/a
125 2.131E-01 4,228E-02 2.260E-03 5.242E+00 n/a n/a
150 1.837E-01 2.864E-02 6.595E-04 3.169E+00 n/a n/a
175 1.680E-01 2.387E-02 4.727E-04 2.276E+00 3.752E+00 n/a
200 1.584E-01 2.225E-02 4.050E-04 1.762E+00 1.644E+00 1.434E+00
225 1.529E-01 2.123E-02 3.838E-04 1.539E+00 1.249E+00 8.446E-01
250 1.503E-01 2.075E-02 3.795E-04 1.393E+00 1.000E+00 5.652E-01
275 1.493E-01 2.036E-02 3.780E-04 1.288E+00 8.876E-01 4.722E-01
300 1.484E-01 2.044E-02 3.773E-04 1.234E+00 8.402E-01  4.207E-O1

—o—Case 1
—@—Case 2

(9) —&—Case 3

.4

®? —¢—Case 4
—¥%—Case 5
—0—Case 6

75 125 175 225 275 325
Censoring time

Figure 15. Comparisons of % RSD in estimating R with different censoring times for

scenario 1
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Scenario 2. Assuming without prior knowledge of p
Tables 14-17 and Figures 16-19 illustrate RSDs for o‘ts,ﬁ,ﬁ, and Rat different

censoring times for scenario 2. The results show that RSDs tend to decrease and stay steady
over time for every case. Generally RSDs for cases 1-3 stabilize faster with lower RSDs than

cases 4-6. One possible explanation is that cases 1-3 have lower mean time to return so that

the estimation is improved as more returns arrive earlier. Furthermore, RSDs in [ and R are
lower than those for ¢;and f, which means that we can obtain narrower confidence

intervals for estimating [ and R than for the parameter estimates.

Table 14. Comparing % RSD in estimating &, for scenario 2

Certlisrgremg Casel Case2 Case3 Cased Case$5 Case6
75 4.664E+01 n/a n/a n/a n/a n/a
100 2.435E+01  4.793E+01 n/a n/a n/a n/a
125 1.510E+01 2.287E+01 4.517E+01 6.126E+01 n/a n/a
150 1.078E+01 1.386E+01 2.077E+01  3.560E+01 n/a n/a
175 8.553E+00 9.653E+00 1.406E+01 2.230E+01 4,265E+01 n/a
200 7.201E+00 7.354E+00 8.779E+00 1.634E+01 2.343E+01 3.664E+01
225 6.411E+00 6.352E+00 7.023E+00 1.216E+01 1.557E+01 3.024E+01
250 5.916E+00 5.723E+00 6.323E+00 9.850E+00 1.116E+01 1.429E+01
275 5.585E+00 5.465E+00 6.053E+00 8.343E+00 9.647E+00 9.585E+00
300 5.395E+00 5.245E+00 5.740E+00 7.333E+00 8.034E+00 7.164E+00
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% RSD
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Figure 16. Comparisons of % RSD in estimating &, with different censoring times for

scenario 2

Table 15. Comparing % RSD in estimating B for scenario 2

Cer['nisnc::mg Casel Case2 Case3 Cased Case5 Case6
75 8.181E+01 n/a n/a n/a n/a n/a
100 3.528E+01  1.038E+02 n/a n/a n/a n/a
125 2.075E+01 2.951E+01 8.437E+01 1.126E+02 n/a n/a
150 1.348E+01 1.743E+01 2.323E+01 5.431E+01 n/a n/a
175 1.020E+01 1.086E+01 1.595E+01 3.057E+01 1.177E+02 n/a
200 1.066E+01 7.904E+00 9.544E+00 2.085E+01 3.257E+01 4.359E+01
225 6.894E+00 6.666E+00 7.490E+00 1.467E+01 1.966E+01  3.434E+01
250 6.314E+00 5.911E+00 6.653E+00 1.139E+01 1.287E+01 1.561E+01
275 5.880E+00 5.592E+00 6.436E+00 9.324E+00 1.052E+01 1.013E+01
300 5.644E+00 5.345E+00 6.020E+00 8.374E+00 8.898E+00 7.385E+00
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% RSD
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Figure 17. Comparisons of % RSD in estimating B with different censoring times for

scenario 2

Table 16. Comparing % RSD in estimating /i for scenario 2

Certlisncigmg Casel Case2 Case3 Cased4 CaseS Caseb
75 2.575E+01 n/a n/a n/a n/a n/a
100 1.073E+01 3.261E+01 n/a n/a n/a n/a
125 5.520E+00 6.592E+00 1.670E+01 3.202E+01 n/a n/a
150 3.124E+00 2.947E+00 3.721E+00 1.366E+01 n/a n/a
175 2.118E+00 1.659E+00 1.730E+00 7.001E+00 2.347E+01 n/a
200 1.643E+00 1.130E+00 8.959E-01 4.352E+00 6.242E+00 7.317E+00
225 1.432E+00 1.014E+00 7.247E-01 2.699E+00 3.145E+00 4.848E+00
250 1.362E+00 9.559E-01 6.863E-01 1.995E+00 1.767E+00 1.724E+00
275 1.311E+00 9.351E-01 6.865E-01 1.553E+00 1.242E+00 9.161E-01
300 1.296E+00 9.255E-01 6.649E-01 1.335E+00 9.650E-01 6.411E-01
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Figure 18. Comparisons of % RSD in estimating [ with different censoring times for

scenario 2

Table 17. Comparing % RSD in estimating R for scenario 2

Ce?isrﬁgng Casel Case2 Case3 Cased4 Case5S Caseb
75 1.753E+01 n/a n/a n/a n/a n/a
100 4.356E+00 2.864E+01 n/a n/a n/a n/a
125 2.439E+00 7.953E-01 1.327E+01  4.374E+01 n/a n/a
150 1.174E+00 6.021E-01 9.028E-02 1.773E+01 n/a n/a
175 7.814E-01 1.578E-01 1.754E-02 9.777E+00  4.420E+01 n/a
200 5.126E-01 7.637E-02 8.629E-03 6.642E+00 1.237E+01 8.678E+00
225 4.078E-01 7.483E-02 4987E-03 4.283E+00 5.818E+00 6.047E+00
250 3.607E-01 6.478E-02 4 696E-03 3.285E+00 3.259E+00 2.713E+00
275 3.249E-01 6.049E-02 3.671E-03 2537E+00 2.380E+00 1.507E+00
300 3.164E-01 5.697E-02 2.105E:03 2.122E+00 1.810E+00 9.851E-01
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Figure 19. Comparisons of % RSD in estimating R with different censoring times for

scenario 2

Comparing scenarios

Tables 14-17 and Figures 16-19 illustrate the percent errors and RSDs for /I and R at

different censoring times for scenario 1 and 2. The reason that we focus on the results for [

and R is because these estimates provide a lot more insi ghtful information about the returns
than just considering only &, andﬁ . Comparing scenarios 1 and 2, the results suggest that

knowledge of the scale parameter contributes greatly to the precision. For the cases that have
small expected length of time to return, both errors and RSD gradually decrease and stay
constant earlier than those with a higher mean time to return because more observations are
taken into account in estimation. The variability of sale distributions affects the width of
confidence intervals; the higher the C.V., the wider the confidence interval for large

censoring times.
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CHAPTER 5. SUMMARY AND CONCLUSION

5.1 Summary

The objective of this research is to study the effect of characteristics of time to return
distributions on the predictability of the future returns of electronic products. We assumed
that information related to the times at which individual units were sold and returned was
obtainable and consisted of observations from two independent gamma distributions.
Maximum Likelihood Estimation was used to give the point estimates for a multiple
censored data set including confidence intervals. We considered two scenarios depending on
available knowledge about the scale parameter and furthermore each scenario consisted of
six different test cases. The observation data were simulated according to the average useful

life of PC (Grenchus, 2002).

5.2 Conclusion

The results suggest that for every case the accuracy and precision of estimates
improves as censoring times increase, until reaching the certain time at which precision and
accuracy remain approximately constant. The variability of sale time and the mean of the
time to return distributions affect the precision in estimation: the higher the variability, the
wider the confidence interval of estimates. With the knowledge about return time
distributions, the confidence interval width is smaller than without prior knowledge.

Nonetheless, without prior knowledge, we can still use estimates of mean return time and
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proportion returned before obsolescence that have the percent error considerably smaller

compared to errors in estimates of shape and scale parameters.

5.3 Future research

An interesting extension to be considered is to estimate distributions of Y5, the time
that an item is in use, rather than T = Y; + Y, the return time, because the return time
distribution could be derived from returns the stream but the time from sale to return of an
item is actually difficult to obtain and it would be interesting to know how long an items
spends in use. It also would be interesting to apply other estimation approaches to evaluate
performance of predictability with different amounts of variability in the data by measuring
the average deviation from the true values comparing with MLE approach. One example for
a estimation approach to explore is Bayesian analysis. The Bayesian approach takes the
benefit of historical data sets that could lead to the improvement in estimation and it also
relaxes the assumption of asymptotic normality that might not hold with a highly censored
data set. Nonetheless, we need extremely intensive computation effort to perform the
Bayesian updates (Punt and Hilborn, 2003). Another possible extension is to consider the
case that not all units will be returned. The assumption in this thesis that all units will be
returned might not exactly fit in a remanufacturing environment where only a portion of units

sold will be returned.
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APPENDIX A. SCENARIO 1 DATA
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Scenario 1. Assuming prior knswledge of § is available

Table Al. The estimated pararaeters and variances for case 1 (scenario 1)

s| o C R & a vig)  via) v(a)
75 8.95 741.05 0.981 8.038 200.959 2.324E-05 9.743E-02 6.089E+01
100 ] 37.86 712.14 0.981 8.033 200.813 7.921E-06 3.591E-02 2.244E+01
125 | 99.72 650.28 0.982 8.019 200.466 4.378E-06 2.056E-02 1.285E+01
150 1 190.48 559.52 0.982 8.024 200.599 3.253E-06 1.509E-02 9.433E+00
175 | 300.19 449.81 0.981 8.031 200.771 2.718E-06 1.263E-02 7.893E+00
200 ] 410.23 339.77 0.982 8.025 200.614 2.418E-06 1.137E-02 7.108E+00
225§ 506.09 243.91 0.982 8.018 200.445 2.254E-06 1.072E-02 6.701E+00
250 | 582.73 167.27 0.982 8.017 200.430 2:178E-06 1.039E-02 6.495E+00
275 | 641.77 108.23 0.982 8.019 200.484 2.147E-06 1.022E-02 6.389E+00
300 | 682.86 67.14 0.982 8.017 200.433 2.122E-06 1.013E-02 6.330E+00
3251 709.35 40.65 0.982 8.017 200.428 2.112E-06 1.008E-02 6.302E+00
350 | 725.98 24.02 0.982 8.017 200.431 2.108E-06 1.006E-02 6.287E+00
375 | 736.21 13.79 0.982 8.017 200.419 1.005E-02 6.280E+00
400 | 742.37 7.63 0.982 8.017 200.417 1.004E-02 6.276E+00
425 | 745.88 412 0.982 8.017 200.413 1.004E-02 6.274E+00
450 | 747.79 2.21 0.982 8.016 200.404 1.004E-02 6.273E+00
475 | 748.77 1.23 0.982 8.016 200.404 1.004E-02 6.273E+00
500 | 749.31 0.69 0.982 8.016 200.408 1.004E-02 6.273E+00

_790 750.00 0.00 0.982 8.016 200.409 1.004E-02 6.273E+0)0_
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Table A2. 90% confidence intervals for es*imated parameters from case 1 (scenario 1)

90% confidence 90% confidence 90% confidence
interval interval interval
S for R for &, for 4
Lower Upper Lower Upper Lower Upper
bound bound bound bound bound bound

75 {0.973 0.989 7.525 8.552  188.123 213.795
10010977 0.986 7.721 8.344  193.020 208.606
1251 0.978 0.985 7.783 8.255 194,569  206.364
150§ 0.979 0.985 7.822 8.226 195546  205.651
17510979 0.984 7.846 8.216  196.149  205.393
20010.979 0.984 7.849 8200 196.228  205.000
22510.979 0.984 7.847 8.188 196.186 204.703
25010.979 0.984 7.850 8.185 196.238 204.622
27510.979 0.984 7.853 8.186  196.326 204.642
300} 0.979 0.984 7.852 8.183 196.294 204.572
32510979 0984 7.852 8.182 196.299  204.557
350 ] 0.979 0.984 7.852 8.182 196.306  204.556

375 7.965 8.069 196.297  204.541
400 7.852 8.182  196.296 204.538
425 7.852 8.181 196.292  204.533
450 7.851 8.181 196.284  204.524
475 7.851 8.181 196.284  204.524
500 7.852 8.181 196.288  204.528

700 7.852 8.181 196.289  204.529
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Table A3. The estimated parameters and variances for case 2 (scenario 1)

s D C R a, A V(R) v(a,) v(a)
100 | 598 74402 0998 16.2556 203.185 1.250E-06 3.365E-01  5.258E+01
125| 3542 71458 0998 16.056 200.698 1.780E-07 8.159E-02 1.275E+01
150 | 117.30 632.70  0.998  16.024 200.305 8.170E-08 4.081E-02  6.377E+00
175 | 24652 503.48 0.998  16.035 200.439 5.676E-08 2.848E-02  4.450E+00
200 | 397.78 35222 0.998 16.017 200218 4.930E-08 2.374E-02  3.710E+00
225 | 532.33 217.67 0.998  16.009 200.106 4.490E-08 2.194E-02  3.428E+00
250 | 631.50 118.50 0.998  16.010 200.124 4.290E-08 2.117E-02  3.307E+00
275 | 691.46 5854  0.998 16.015 200.184 4.130E-08 2.085E-02 3.259E+00
300 | 72372 2628 0998 16.010 200.124 4.160E-08 2.074E-02  3.250E+00
325 | 739.16 1084  0.998  16.009 200.114 4.140E-08 2.070E-02  3.234E+00
350 | 745.91 409  0.998  16.008 200.104 4.140E-08 2.069E-02  3.232E+00
375 | 748.33 167  0.998  16.008 200.099 2.068E-02  3.231E+00
400 | 749.45 055  0.998  16.007 200.091 2.068E-02 3.231E+00
425 | 74987 013 0998  16.008 200.101 2.068E-02  3.231E+00
450 | 749.96 0.04  0.998  16.009 200.106 2.068E-02  3.231E+00
475 | 750.00  0.00  0.998  16.009 _ 200.106 2.068E-02  3.231E+00

Table A4. 90% confidence intervals for estimated parameters from case 2 (scenario 1)

100
125
150
175
200
225
250
275
300
325
350
375
400
425
450
475

90% confidence
interval

90% confidence

interval

90% confidence

interval

for é for 0?3 for ,LAl
Lower Upper Lower Upper Lower Upper
bound bound bound bound bound bound
0.996 0.999 15301 17.209 191.257 215.113
0.997 0.999 15586 16.526 194.824 206.571
0.998 0.999 15.692 16.357 196.151 204.459
0.998 0.998 15757 16.313 196.969 203.909
0.998 0.998 15.764 16.271 197.049  203.386
0.998 0998 15.765 16.252 197.060 203.152
0998 0.998 15.771 16.249 197.132 203.115
0.998 0.998 15.777 16.252 197.214 203.153
0.998 0.998 15773 16.247 197.158  203.089
0.998 0.998 15.772 16.246 197.155  203.072
0.998 0998 15772 16.245 197.146  203.061
15.771 16.244 197.142  203.056
15771 16.244 197.134  203.048
15.772 16.245 197.144  203.058
15.772 16.245 197.149  203.063
15,772 16.245 197.149  203.063
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Table AS. The estimated parameters and variances for case 3 (scenario 1)

S D C a V(R) v(a,) V(i)
125| 710 74280 0.999 31.828 198.923 5.107E-10 5.922E-01  2.313E+01
150} 50.66 699.34 0999  31.837 198.979 4.349E-11  1.312E-01  5.126E+00
175 | 187.01 562.99 0.999 31.885 199.278 2234E-11  6.586E-02 2.573E+00
200 | 392.55 357.45 0.999 31.892 199.324 1.640E-11  4.880E-02  1.906E+00
225 | 577.89 17211 0999 31902 199.388 1.473E-11  4.377E-02  1.710E+00
250 | 686.55 63.45 0.999  31.911 199.445 1.440E-11  4.234E-02  1.654E+00
2751 731.80 1820 0.999 31914 199.463 1.429E-11  4.198E-02  1.640E+00
300 | 745.75 425 0999  31.912 199.449 1.423E-11  4.190E-02  1.637E+00
325|749.35 065 0999 31912 199.450 1.423E-11  4.189E-02  1.636E+00
350 | 749.91  0.09 0999 31912 199.450 1.422E-11  4.189E-02  1.636E+00
375 | 749.99 001  1.000 31.912 199.448 4.189E-02  1.636E+00
400 | 750.00  0.00  1.000  31.912  199.449 4.189E-02  1.636E+00

Table A6. 90% confidence intervals for estimated parameters from case 3 (scenario 1)

90% confidence 90% confidence 90% confidence
interval interval interval
) for j“\! for dl for ﬂ

Lower Upper Lower Upper Lower Upper

bound bound bound bound bound bound
1251 0.999 1.000 30.562 33.094 191.011 206.835
15010999 0.999 31.241 32.433 195254 202.703
17510999 0.999 31.751 32.018 196.640 201.917
2001 0.999 0.999 31.777 32.007 197.053 201.596
22510999 0.999 31558 32.246 197.237 201.539
2501 0.999 0.999 31.573 32250 197.329 201.561
27510999 0.999 31.577 32.251 197.357 201.570
3001 0.999 0999 31575 32249 197.345 201.554
32510999 0.999 31.575 32.249 197.346 201.554
3501 0.999 0.999 31575 32249 197.345 201.554
375 31575 32248 197.344  201.552
400 31.575 32248 197.345 201.553
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Table A7. The estimated parameters and variances for case 4 (scenario 1)

S D C R a, Q V(R) v(a,) V(i)
125 | 4.15 74585 0.809 12.064 301.605 1.798E-03 2.932E-01  1.832E+02
150} 1496 73504 0.809 12.063 301.575 6.580E-04 1.097E-01 6.854E+01
175 | 4054 709.46 0.808 12.083 302.068 3.384E-04 5.703E-02  3.564E+01
200 | 85.09 664.91 0.812 12.036 300.910 2.049E-04 3.569E-02 2.230E+01
225 | 14858 601.42 0.810 12.060 301.508 1.556E-04 2.682E-02 1.676E+01
250 | 227.81 522.19 0.810 12.032 300.795 1.275E-04 2.200E-02  1.375E+01
275 | 315.73 43427 0.813  12.033 300.825 1.096E-04 1.916E-02 1.198E+01
300 { 403.80 346.20 0.813 12.031 300.778 1.007E-04 1.762E-02  1.101E+01
325 | 48542 264.58 0.814 12.020 300.493 9.471E-05 1.667E-02 1.042E+01
350 | 554.75 195.25 0.813  12.023 300.563 O.181E-05 1.614E-02  1.009E+01
375 | 611.24 138.76 0.815 12.024 300.593 1.582E-02  9.888E+00
400 | 65459 9541  0.815 12.018 300.458 1.562E-02  9.760E+00
425 | 686.32 6368  0.815 12.021 300.528 1.551E-02  9.696E+00
450 | 708.26 41.74  0.815 12.020 300.490 1.545E-02  9.654E+00
475 | 72407 2593  0.815 12.029 300.713 1.541E-02  9.633E+00
500 | 733.85 16.15  0.815 12.020 300.498 1.539E-02  9.620E+00
525 | 74023 977  0.815 12,020 300.506 1.538E-02  9.614E+00
s50| 74428 572  0.815 12.019 300.485 1.538E-02  9.609E+00
575 | 74675 325  0.815 12.019 300.486 1.537E-02  9.607E+00
600 | 74825 175  0.815 12.019 300.470 1.537E-02  9.606E+00
700 | 750.00  0.00  0.815  12.019 300.485 1.537E-02 __ 9.606E+00 _
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Table A8. 90% confidence intervals for estimated parameters from case 4 (scenario 1)

90% confidence 90% confidence 90% confidence
interval interval interval
S for R for O, for 4
Lower Upper Lower Upper Lower Upper
bound bound bound bound bound bound

12510739 0.879 11.174 12955 279.338 323.872
150§ 0.767 0.852 11.518 12.608 287956 315.194
1751 0.778 0.839 11.690 12476 292246 311.889
2001 0.738 0.887 11.726 12.347 293.141  308.679
22510790 0.831 11.791 12330 294.772  308.243
2501 0.792 0.829 11.788 12276 294.696 306.894
27510795 0830 11.805 12.261 295.132 306.518
300 0.796 0.829 11.813 12.249 295.318 306.237
32510798 0.830 11.811 12229 295.183 305.802
35010798 0.829 11.816 12.229 295.338  305.787

375 11.818 12.229 295.420 305.765
400 11.813 12223 295.318  305.597
425 11.817 12226 295405  305.650
450 11.816 12224 295.379  305.601
475 11.824 12233 295.607 305.818
500 11.816 12.224 295.395 305.600
525 11.816 12.224 295.405  305.606
550 11.815 12223 295.386 305.584
575 11.816 12223 295.387  305.585
600 11.815 12223 295.372  305.568

700 12.019 12.019 295.387  305.583
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Table A9. The estimated parameters and variances for case 5 (scenario 1)

s D C B a, il v(R) v(a,) v(a)
175 714 742.86 0.882 24.194 302.420 1.097E-03 4.378E-01 6.840E+01
200 27.35 722.65 0.881 23.983 299.785 2.095E-04 1.468E-01 2.294E+01
225 76.18 673.82 0.887 23.999 299.991 1.227E-04 7.930E-02 1.239E+01
250 | 160.86 589.14 0.886 24.051 300.639 7.846E-05 5.356E-02 8.369E+00
275 | 272.65 477.35 0.886 24.033 300.410 6.180E-05 4.219E-02 6.593E+00
300 | 396.62 353.38 0.884 24.009 300.109 5.515E-05 3.651E-02 5.705E+00
325 | 510.59 239.41 0.884 24.051 300.639 5.117E-05 3.391E-02 5.298E+00
350 | 599.77 150.23 0.885 24.061 300.766 4.304E-05 3.256E-02 5.088E+00
375 | 663.63 86.37 0.885 24.064 300.794 3.193E-02 4.989E+00
400 | 704.61 45.39 0.885 24.050 300.629 3.163E-02 4.943E+00
425 | 727.04 22.96 0.885 24.056 300.698 3.150E-02 4.922E+00
450 | 739.08 10.92 0.885 24.058 300.729 3.145E-02 4.914E+00
475 | 745.06 494 0.885 24.058 300.721 3.173E-02 4.911E+00
500} 747.91 2.09 0.885 24.057 300.710 3.142E-02 4.909E+00
700 | 750.00 0.00 0.885 24.056 300.703 3.142E-02 4.909E+00

Table A10. 90% confidence intervals for estimated parameters from case 5 (scenario

1)

90% confidence 90% confidence 90% confidence

interval interval interval
S for R for 1, for i

Lower Upper Lower Upper Lower Upper

bound bound bound bound bound bound
1751 0.828 0.937 23.105 25.282 288.815 316.025
200 ] 0.857 0.904 23.352 24613 291.906 307.664
22510.868 0.905 23.536 24.463 294.201 305.782
250§ 0.871 0.900 23.670 24.432 295.880 305.398
2751 0.873 0.899 23.695 24.371 296.186 304.634
3001 0.872 0.896 23.694 24.323 296.180 304.038
325]10.872 0.896 23.748 24.354 296.852 304.425
3501 0.874 0.896 23.764 24358 297.056 304.477
375 23.770 24.357 297.120 304.468
400 23.758 24.343 296.972 304.286
425 23.764 24.348 297.048  304.347
450 23.767 24350 297.082 304.375
475 23.765 24.351 297.076  304.367
500 23.765 24.348 297.065 304.355
700 23.765 24.348 304.347

297.058




Table A11. The estimated parameters and variances for case 6 (scenario 1)
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s| b c B a, i v(R) v(g,) v(a)
200 3.62 746.38 0.957 49.265 307.907 1.887E-04 1.23BE+00 4.834E+01
2251 24.08 725.92 0.952 48.343 302.146 6.469E-05 2.894E-01 1.130E+01
250 ] 89.86 660.14 0.951 48.160 301.000 2.894E-05 1.397E-01 5.459E+00
275 1 220.75 529.25 0.949 48.106 300.661 2.010E-05 9.164E-02 3.580E+00
300 | 391.63 358.37 0.949 48.059 300.371 1.595E-05 7.403E-02 2.892E+00
325} 548.25 201.75 0.948 48.032 300.200 1.456E-05 6.679E-02 2.609E+00
350 | 655.91 94.09 0.948 48.022 300.139 1.397E-05 6.411E-02 2.504E+00
3751 712.76 37.24 0.950 48.039 300.244 6.334E-02 2.474E+00
400 } 737.96 12.04 0.950 48.040 300.252 6.308E-02 2.464E+00
425 | 746.64 3.36 0.950 48.040 300.248 6.301E-02 2.461E+00
450 | 749.23 0.77 0.950 48.037 300.233 6.300E-03 2.461E+00
475 | 749.81 0.19 0.950 48.039 300.242 6.300E-02 2.461E+00
500 | 749.94 0.06 0.950 48.039 300.242 6.300E-02 2.461E+00
700 | 750.00 0.00 0.950 48.039 300.2& 6.300E-02 2.461 E+OQ_

Table A12. 90% confidence intervals for estimated parameters from case 6 (scenario

1)

90% confidence 90% confidence 90% confidence

interval interval interval
S for 1’% for &3 for ‘ﬁ

Lower Upper Lower Upper Lower Upper

bound bound bound bound bound bound
20010935 0.980 47.435 51.095 296.470 319.344
22510939 0.966 47.458 49.228 296.616 307.676
250 1 0.943 0.961 47545 48775 297.157 304.843
2751 0.942 0.957 47608 48.604 297.548 303.773
300]0.943 0.956 47.612 48.507 297.574 303.169
32510942 0.955 47.607 48.457 297.543  302.857
35010942 0955 47.606 48.439 297.536 302.742
375 47.625 48453 297.657 302.832
400 47.627 48.453 297.670 302.834
425 47.627 48.453 297.667 302.828
450 47.907 48.168 297.652  302.813
475 47.626 48.452 297.661 302.822
500 47626 48.452 297.661 302.822
700 47.626 48.452 297.661

302.822
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APPENDIX B. SCENARIO 2 DATA



Scenario 2. Assuming without prior knowledge of f

Table B1. The estimated parameters for case 1 (scenario 2)

s| o ¢ R a, B i viR)  vie)  vig) v
75 953 740.47 0.935 8.640 30.387 262.534 2.689E-02 1.624E+01 6.180E+02 4.571E+03
100§ 37.96 712.04 0.967 7.844 27.845 218.413 1.775E-03 3.648E+00 9.650E+01 5.494E+02
1251 101.63 648.37 0.967 7.630 28.205 215.197 5.562E-04 1.327E+00 3.424E+01 1.411E+02
150 } 192.70 557.30 0.975 7.740 26.832 207.678 1.310E-04 6.968E-01 1.308E+01 4.210E+01
175 { 302.10 447.90 0.977 7.917 26.207 207.471 5.826E-05 4.584E-01 7.143E+00 1.931E+01
200 1 411.26 338.74 0.981 8.159 24 929 203.384 2.528E-05 3.452E-01 7.061E+00 1.116E+01
2251 507.28 242.72 0.982 8.197 24.942 204.445 1.604E-05 2.762E-01 2.957E+00 8.572E+00
250 | 585.63 164.37 0.982 8.201 24.595 201.694 1.255E-05 2.354E-01 2.412E+00 7.548E+00
275164275 107.25 0.983 8.272 24.344 201.365 1.020E-05 2.134E-01 2.049E+00 6.974E+00
300 {1 682.94 67.06 0.982 8.221 24 511 201.508 9.660E-06 1.967E-01 1.914E+00 6.815E+00
325 1709.04 40.96 0.982 8.221 24 512 201.521 9.071E-06 1.875E-01 1.801E+00 6.695E+00
350 | 725.02 24.98 0.983 8.259 24.366 201.234 B8.432E-06 1.828E-01 1.705E+00 6.579E+00
375173590 14.10 0.981 8.272 24.325 201.224 1.800E-01 1.662E+00 6.535E+00
400 | 742.11 7.89 0.981 8.274 24.319 201.219 1.783E-01 1.641E+00 6.518E+00
425 | 745.74 4.26 0.981 8.261 24.358 201.226 1.768E-01 1.636E+00 6.522E+00
450 | 747.72 2.28 0.981 8.253 24.385 201.237 1.759E-01 1.634E+00 6.527E+00
475 {1 748.70 1.30 0.981 8.257 24 367 201.208 1.757E-01 1.626E+00 6.519E+00
500 | 749.36 0.64 0.981 8.264 24.346 201.187 1.754E-01 1.618E+00 6.510E+00
700 ) 750.00 0.00 8.255 24.371 201.173 1.753E-01 1.624E+00 6.517E+00

0.981

19



Table B2. 90% confidence intervals for estimated parameters from casel (scenario 2)

90% confidence interval 90% confidence interval 90% confidence interval 90% confidence interval

S for R for Oy for ﬂ for i
Lower Upper Lower Upper Lower Upper Lower Upper
bound bound bound bound bound bound bound bound

75 0.666 1.000 2.011 15.269 0.000 71.281 151.313 373.756
100 | 0.898 1.000 4.702 10.986 11.686 44.004 179.856 256.969
125 ] 0.928 1.000 5.735 9.525 18.579 37.831 195.656 234.738
150 | 0.956 0.994 6.367 9.113 20.883 32.781 197.004 218.352
175 | 0.964 0.989 6.803 9.030 21.811 30.604 200.243 214.699
200 ) 0973 0.989 7.192 9.125 20.558 29.300 197.887 208.880
2251 0975 0.989 7.332 9.061 22.113 27.770 199.629 209.261
2501 0.976 0.988 7.402 8.999 22.041 27.150 197.174 206.213
275} 0977 0.988 7.512 9.032 21.989 26.699 197.021 205.710
300y 0.977 0.987 7.492 8.951 22.235 26.786 197.213 205.802
3251 0.977 0.987 7.509 8.934 22.304 26.720 197.265 205.778
350 0.978 0.987 7.555 8.962 22.218 26.514 197.014 205.453

375 7.574 8.970 22.205 26.446 197.019 205.429
400 7.580 8.969 22212 26.426 197.020 205.419
425 7.570 8.953 22.253 26.462 197.025  205.427
450 7.563 8.943 22.282 26.487 197.034 205.439
475 7.568 8.947 22.269 26.465 197.008 205.408
500 7.575 8.953 22.253 26.438 196.990 205.385

700 7.566 8.943 22.275 26.467 196.974 205.373
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Table B3. The estimated parameters for case 2 (scenario 2)

s| b C i a, f; i v(R) via,) v(3) v(d)
100 6.31 743.69 0.929 11.503 22610 260.083 7.074E-02 3.039E+01 5.506E+02 7.195E+03
1251 3710 712.90 0.996 16.000 12.870 205.921 6.279E-05 1.338E+01 1.442E+01 1.842E+02
1501 116.94 633.06 0.996 16.206 12.800 207.444 3.594E-05 5.049E+00 4.980E+00 3.738E+01
175 | 248.80 501.20 0.997 15.468 13.036 201.642 2476E-06 2.229E+00 2.003E+00 1.119E+01
200 | 402.31 347.69 0.998 16.282 12.253 199.510 5.812E-07 1.434E+00 9.380E-01 5.078E+00
225 | 537.18 212.82 0.998 15.618 12.809 200.052 5.575E-07 9.841E-01 7.291E-01 4.115E+00
2501 633.68 116.32 0.998 15.655 12.782 200.098 4.179E-07 8.028E-01 5.709E-01 3.658E+00
275 1693.64 56.36 0.998 15.645 12.786 200.036 3.644E-07 7.309E-01 5.112E-01 3.499E+00
300 | 724.66 25.34 0.998 15.707 12.735 200.025 3.232E-07 6.787E-01 4.634E-01 3.427E+00
325173988 10.12 0.998 15.769 12.685 200.035 3.003E-07 6.553E-01 4.381E-01 3.392E+00
350 } 746.05 3.95 0.998 15.828 12.635 199.997 2.847E-07 6.478E-01 4.252E-01 3.368E+00
375 1748.43 1.57 0.998 15.922 12.562 200.008 6.425E-01 4.113E-01 3.345E+00
400 | 749.38 0.62 0.998 15.845 12.626 200.058 6.419E-01 4.197E-01 3.362E+00
425 ]| 749.82 0.18 0.998 15.787 12.673 200.071 6.412E-01 4.255E-01 3.376E+00
450 | 749.94 0.06 0.998 15.649 12.800 200.303 6.406E-01 4.425E-01 3.412E+00
475 750.90 0.00 0.998 16.549 1 2.082 200.056 6.1 64E_-O1 4.141E-01 3.224E+00
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Table B4. 90% confidence intervals for estimated parameters from case 2 (scenario 2)

90% confidence interval 90% confidence interval 90% confidence interval 90% confidence interval

s for R for (4 for ﬁ for
Lower Upper Lower Upper Lower Upper Lower Upper
bound bound bound bound bound bound bound bound

100 | 0.491 1.366 2.434 20.572 0.000 61.209 120.547 399.619
125 | 0.983 1.009 9.981 22.018 6.623 19.118 183.593 228.250
150 | 0.986 1.005 12.5610 19.902 9.129 16.471 197.387 217.502
175 ] 0.995 1.000 13.012 17.924 10.708 15.364 196.140 207.144
200 | 0.997 1.000 14312 18.252 10.660 13.847 195.803 203.217
225 | 0.997 0.999 13.986 17.250 11.404 14.214 196.715 203.389
250 | 0.997 0.999 14.181 17.129 11.539 14.025 196.952 203.244
275 | 0.997 0.999 15.200 16.090 11.610 13.962 196.959 203.113
300 | 0.997 0.999 14.351 17.062 11.615 13.855 196.980 203.071
325 | 0.997 0.999 14438 17.101 11.596 13.774 197.006 203.065
3501 0.997 0.999 14504 17.152 11.563 13.708 196.978 203.016

375 14.603 17.241 11.507 13.617 196.999 203.016
400 14.527 17.163 11.560 13.692 197.042 203.074
425 14.470 17.104 11.600 13.746 197.048 203.093
450 14332 16.965 11.706 13.894 197.265 203.342

475 14.332  16.965 11706 13.894 197.265 203.342




Table BS. The estimated parameters for case 3 (scenario 2)

S D C R a, i 7 V(R) v(&,) V(ﬁ) v(a)
125| 510 74490 0957 22738 12516 284.587 1.613E-02 1.055E+02 1.115E+02 2.260E+03
150 | 49.05 700.95 0.999 29541 6949 205265 8.148E-07 3.764E+01 2.605E+00 5.834E+01
175 | 184.94 565.06 0.999 29297 6959 203.887 3.077E-08 1.696E+01 1.233E+00 1.244E+01
200 | 391.52 35849 0999 29.186 6.958 203.091 7.445E-09 6.566E+00 4.411E-01 3.311E+00
225 | 57453 17547 0999 29110 6.957 202.534 2.486E-09 4.179E+00 2.716E-01 2.154E+00
250 | 683.42 6658 0.999 29.066 6.970 202.592 2205E-09 3.377E+00 2.151E-01 1.933E+00
275 | 730.46 1955 0999 29056 6.886 200.071 1.347E-09 3.094E+00 1.964E-01 1.886E+00
300 | 745.85 4.15  0.999  30.010 6.749 202.528 4.428E-10 2.967E+00 1.650E-01 1.813E+00
325|749.18 082 0999 32504 6213 201.964 1.660E-10 2.885E+00 1.129E-01 1.658E+00
350 | 749.90 0.10  0.999 32919 6.092 200.556 1.627E-10 2.874E+00 9.997E-02 1.624E+00

000 0999  32.937 200.536 2.874E+00 9.971E-02 1.622E+00

6.088

1.627E-10

315

750.00
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Table B6. 90% confidence intervals for estimated parameters from case 3 (scenario 2)

90% confidence interval 90% confidence interval 90% confidence interval 90% confidence interval

S for R for 0L, for ﬂ for I
Lower Upper Lower Upper Lower Upper Lower Upper
bound bound bound bound bound bound bound bound

125] 0748 1000 5844 39.631  0.000 29.888 206.389  362.785
150 | 0998  1.000 19.448 39.634  4.294 9604 192701  217.830
175 | 0999  1.000 22522 36072 5133 8786  198.085  209.690
200 0999  1.000 24971 33401 5866  8.051  200.098  206.084
225| 0999 0999 25747 32473  6.100  7.815  200.120  204.949
250 | 0999 0999 26043 32089 6207  7.733  200.305  204.879
275| 0999 0999 26163 31.950 6.157  7.615  197.811  202.330
300| 0999 0999 27.176 32843  6.080  7.417  200.313  204.743
325| 0999 0999 29710 35298 5661 6766  199.846  204.083
350| 0999 0999 30131 35708 5572 6613  198.460  202.652
375 30149 35726 5569  6.608  198.440  202.631

———
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Table B7. The estimated parameters for case 4 (scenario 2)

s| b C B a, A i v(R) via,) v(8) v(a)
125 3.80 746.20 0.850 14666 21.864 320.646 1.381E-01 8.071E+01 '6.063E+02 1.054E+04
150 15.68 734.32 0.852 14.269 22.155 316.133 2.279E-02 2.581E+01 1.448E+02 1.866E+03
175 | 40.27 709.73 0.858 13.888 21.739 301.903 7.034E-03 9.589E+00 4.416E+01 4.467E+02
200 ] 83.68 666.32 0.841 13.020 23.033 299.884 3.119E-03 4524E+00 2.306E+01 1.703E+02
2251 146.95 603.05 0.839 12.872 23.241 299.173 1.291E-03 2.450E4+00 1.162E+01 6.520E+01
250 § 227.48 522.52 0.823 12.204 24540 299.480 7.306E-04 1.445E+00 7.818E+00 3.568E+01
2751 316.64 433.36 0.822 12.155 24.670 299.855 4.347E-04 1.028E+00 5.291E+00 2.169E+01
300 | 405.26 344.74 0.818 12.004 25.063 300.851 3.012E-04 7.748E-01 4.404E+00 1.613E+01
325 ] 484.67 265.33 0.817 11.966 25.169 301.170 2.299E-04 6.332E-01 3.238E+00 1.331E+01
350 { 553.45 196.55 0.816 11.921 25.330 301.968 1.910E-04 5.414E-01 2.756E+00 1.195E+01
375 ] 611.32 138.68 0.815 11.889 25.378 301.715 4 814E-01 2.413E+00 1.117E+01
400 | 653.41 96.59 0.815 11.975 25.143 301.086 4.462E-01 2.125E+00 1.060E+01
425 | 685.93 64.07 0.815 12.084 24.862 300.446 4.271E-01 1.922E+00 1.020E+01
450 | 708.71 41.29 0.815 12.093 24837 300.364 4.101E-01 1.827E+00 1.007E+01
475 | 723.57 26.43 0.815 12.080 24.878 300.521 3.996E-01 1.780E+00 1.002E+01
500 ) 734.11 15.89 0.815 12.097 24.829 300.364 3.923E-01 1.730E+00 9.948E+00
5251 74212 7.88 0.815 12.124 24.763 300.224 3.875E-01 1.691E+00 9.892E+00
550 | 744.65 5.35 0.815 12.126 24746 300.076 3.853E-01 1.680E+00 9.885E+00
575 | 746.94 3.06 0.815 12125 24.763 300.262 3.831E-01 1.670E+00 9.876E+00
600 | 748.37 1.63 0.815 12.141 24735 300.301 3.822E-01 1.658E+00 9.860E+00
700 | 750.00  0.00  0.815 _ 12.100 _24.808  300.179 3.817E-01 _1.673E+00 _9.888E+00_

L9



Table B8. 90% confidence intervals for estimated parameters from case 4 (scenario 2)

90% confidence interval 90% confidence interval 90% confidence interval 90% confidence interval

s for R for a3 for B for “
Lower Upper Lower Upper Lower Upper Lower Upper
bound bound bound bound bound bound bound bound

125 ] 0.238 1.000 0.000 29.444 0.000 62.367 151.727 489.566
150 | 0.603 1.000 5.913 22.626 2.363 41.947 245.074 387.191
1751 0.720 0.996 8.794 18.982 10.808 32.670 267.136 336.670
200 | 0.749 0.933 9.521 16.519 15.134 30.932 278.415 321.352
2251 0.780 0.898 10.298 15.447 17.634 28.849 285.890 312.456
250 | 0.778 0.867 10.226 14.181 19.940 29.139 289.654 309.306
2751 0.788 0.856 10.487 13.823 20.886 28.453 292.193 307.517
300 0.789 0.847 10.556 13.452 21.610 28.515 294.245 307.458
325 | 0.792 0.842 10.657 13.275 22.209 28.129 295.168 307.171
350 | 0.793 0.839 10.711 13.132 22.599 28.061 296.282 307.653

375 10.748  13.030 22.822 27.933 296.217 307.214
400 10.876 13.074 22.745 27.541 295.731 306.440
425 11.009 13.159 22.581 27.143 295.191 305.701
450 11.040 13.147 22.614 27.061 295.144 305.583
475 11.040 13.119 22.683 27.073 295.314 305.729
500 11.067 13.128 22.665 26.992 295.175 305.552
525 11.100 13.148 22.624 26.902 295.050 305.398
550 11.105 13.147 22.614 26.878 294.904 305.248
575 11.107 13.144 22.637 26.888 295.092 305.431
600 11.124  13.158 22.617 26.853 295.136 305.467

700 11.084 13.116 22.681 26.936 295.007 305.352

i
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Table B9. The estimated parameters for case S (scenario 2)

s| o ¢ R 4, B i v(R) vie,)  vig)  v(a)
175 6.93 743.07 0.758 21.013 17.27860 363.075 1.124E-01 8.030E+01 4.138E+02 7.260E+03
2001 28.13 721.87 0.823 21.948 15.34420 336.770 1.037E-02 2.644E+01 2.497E+01 4.419E+02
2251 76.53 673.47 0.864 23.134 13.57650 314.076 2.528E-03 1.298E+01 7.128E+00 9.755E+01
250 ) 161.74 588.26 0.880 23.554 12.88620 303.520 8.221E-04 6.915E+00 2.749E+00 2.876E+01
275 1 272.54 A477.46 0.882 23.954 12.65460 303.128 4.400E-04 5.340E+00 1.773E+00 1.418E+01
300 | 396.88 353.12 0.883 23.964 12.63440 302.772 2551E-04 3.706E+00 1.264E+00 8.537E+00
3251 510.30 239.70 0.884 23.931 12.63410 302.345 1.545E-04 2.577E+00 7.991E-01 6.273E+00
350 ] 600.77 149.23 0.885 23.923 12.63360 302.234 1.210E-04 2.133E+00 6.519E-01 5.559E+00
375 1 665.23 84.77 0.887 23.911 12.63095 302.017 1.898E+00 5.711E-01 5.268E+00
400 | 704.62 45.38 0.887 23.923 12.62994 302.147 1.730E+00 5.155E-01 5.158E+00
425 } 727.16 22.84 0.887 23.926 12.63027 302.206 1.643E+00 4.877E-01 5.104E+00
450 | 739.61 10.39 0.887 23.925 12.62656 302.174 1.604E+00 4.754E-01 5.079E+00
475 | 745.64 4.36 0.887 23.925 12.62775 302.120 1.582E+00 4.691E-01 5.070E+00
500 | 748.38 1.63 0.887 24.052 12.57210 302.382 1.569E+00 4.565E-01 5.039E+00
700 1 750.00 0.887 12.37980 300.662 1.553E+00 4.121E-01 4.950E+00

24.287

_0.00
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Table B10. 90% confidence intervals for estimated parameters from case 5 (scenario 2)

90% confidence interval 90% confidence interval 90% confidence interval 90% confidence interval

S for R for Oy for ﬂ for U
Lower Upper Lower Upper Lower Upper Lower Upper
bound bound bound bound bound bound bound - bound

175§ 0.207 1.000 6.272 35.754 0.000 50.743 222.913 503.238
200 | 0.655 0.991 13.489  30.407 7.124 23.565 302.189 371.351
225 | 0.781 0.947 17.208  29.060 9.185 17.968 297.829 330.323
250} 0.833 0.927 19.228  27.880 10.159 15.614 294,699 312.342
2751 0.847 0916  20.153 27.755 10.464 14.845 296.935 309.322
300 | 0.856 0.808 20.797 27.131 10.785 14.484 297.966 307.579
325 ] 0.864 0905 21.280 26.572 11.164 14.105 298.225 306.465
350§ 0.866 0,903 21520 26.326 11.305 13.962 298.355 306.112

375 21.644  26.177 11.388 13.874 298.242 305.793
400 21759  26.087 11.449 13.811 298.411 305.883
425 21.817 26.034 11.482 13.780 298.489 305.922
450 21.841  26.008 11.496 13.765 298.467 305.881
475 21.856 25.994 11.501 13.754 298.416 305.824
500 21991  26.113 11.461 13.684 298.689 306.074

700 22.237  26.336 11.324 13.436 297.002 304.322

—————————
N ——— — mn——
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Table B11. The estimated parameters for case 6 (scenario 2)

s| o ¢ kR & B i vig)  vie)  vig) v v
200] 3.89 746.11 0940 46.993 6.453 303.256 6.657E-03 2.965E+02 7.912E+00 4.923E+02 2.965E+02
225 ) 2430 725.70 0946 47.618 6.333 301.584 3.273E-03 2.074E+02 4.730E+00 2.138E+02 2.074E+02
2501 89.90 660.10 0.946 47.774 6.316 301.717 6.588E-04 4.663E+01 9.719E-01 2.707E+01 4.663E+01
275]1218.39 531.61 0.947 47863 6.295 301.285 2.038E-04 2.105E+01 4.069E-01 7.619E+00 2.105E+01
300 } 387.69 362.31 0.947 47929 6.287 301.342 8.706E-05 1.179E+01 2.156E-01 3.732E+00 1.179E+01
325 | 545.82 204.18 0949 47907 6.278 300.740 5.122E-05 8.368E+00 1.477E-01 2.810E+00 8.368E+00
350 1 654.92 95.08 0.948 47.940 6.279 301.002 3.892E-05 6.684E+00 1.157E-01 2.579E+00 6.684E+00
37571265 37.35 0950 47.927 6.280 300.978 6.081E+00 1.044E-01 2.508E+00 6.081E+00
4001 737.80 1220 0950 47932 6.266 300.323 5.799E+00 9.922E-02 2.490E+00 5.799E+00
425 | 746.60 3.40 0.950 47.939 6.255 299.865 5.672E+00 9.693E-02 2.485E+00 5.672E+00
450 | 749.11 0.89 0950 47.929 6.242 299.168 5.624E+00 9.175E-02 2.458E+00 5.624E+00
4751749.84 0.16 0.950 48.104 6.233 299.831 5495E+00 8.715E-02 2.564E+00 5.495E+00
500 1749.98 0.02 0.950 48.169 6.233 300.217 5.478E+00 8.097E-02 2.612E+00 5.478E+00
700 { 750.00 0.950 6.245 300.725 5.458E+09 8._953E-02 2.610E+00 5.458E+00

0.00

48.158

|
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Table B12. 90% confidence intervals for estimated parameters from case 6 (scenario 2)

90% confidence interval 90% confidence interval 90% confidence interval 90% confidence interval

s for R for 04 for ﬂ for I
Lower Upper Lower Upper Lower Upper Lower Upper
bound bound bound bound bound bound bound bound

200 ] 0.806 1.000 18.666 75.319 1.826 11.080 266.757 339.756
2251 0.852 1.000 23929 71.307 2.756 9.911 277.531 325.637
250 | 0.904 0.988 36.541  59.007 4.694 7.937 293.159 310.275
275 | 0.924 0.971 40.316  55.410 5.245 7.344 296.745 305.826
300 ) 0.932 0.963 42281 53.578 5.523 7.051 298.164 304.520
3251 0.937 0.961 43.149 52.666 5.645 6.910 297.983 303.498
350 | 0.938 0.958 43.687 52.193 5.719 6.838 298.360 303.644

375 43.871 51.984 5.748 6.811 298.373 303.583
400 43.971 51.894 5.747 6.784 297.728 302.919
425 44021 51.857 5.743 . 6.767 297.271 302.458
450 44.028 51.830 5.744 6.740 296.589 301.747
475 44248 51.960 5.747 6.719 297.197 302.465
500 44319 52.019 5.764 6.701 297.558 302.875

700 44.314  52.001 5.778 6.711 298.067 303.383

L
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APPENDIX C. THE MAXIMUM LIKELIHOOD PROPERTIES
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We review some useful methods, properties and theorems related to MLE that we
have discussed in our analysis. More detail can be found from Serfling (1980) and Lawless
(1982)

Defined 8 = (A,‘éz,...,é , 7 and P denotes the number of estimated parameters

Let é,, is an MLE for 6

Y1, Y2,..., Y~ iid with density or mass functions that depend on 6 ; f(y‘. ;9)

1. Invariance:

If é" = (é 0,,. .0 7 is MLE for 8, and if g(.)is a real-valued function
then g(é) is an MLE g(9)

2. Asymptotic normality:

MLE 6, is AN| 6,——
AN( nI(B))

3. Fisher Information (single variable)

10)= H———logf@,,e) <yi;e)ﬂ =12 p

pxp
az
=|-F 1 0
pxp

Then, the total information is;

z,o,<e>=i—[E[ae?;9,logf<yi;e>D - 1)

i=1

4, Efficiency for estimation of a scalar parameter
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o el

6 is called unbiased for 6 if Ef)=06

Let V([§)2 10)

If 6 is unbiased and V(A)= 1 then 6 is Minimum Variance Unbiased MVU)

nl(6)

. Linear transformations

If g(6)=ab+b, when 6 is AN(;J,O'Z).

Then
g(0) is AN{au +b,a*c?)

. Delta method:

By using rule of linear transformation of normal

If én is AN(B,—V(—B)) and g(.) is a real value function
n

Such that,
§'6)= == 5(0)<
g’(®)=0
Then
TR OO

. Approximate Interval:

An (1- ¢ )100% approximate interval for 8 is
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APPENDIX D. THE GAMMA AND ITS RELATED FUNCTIONS
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We review some useful functions related with Gamma that we have discussed in our
analysis using notation from Lawless (1982).

Likelihood function for Gamma with incomplete samples.

©)=11£G.oNI8.0:)

ieD ieC
Where, (f) is a likelihood function with parameter 6 .
JASY ]9) is a probability density function or probability mass function of observed
data

S, (y,) is survivor function for the censored data, (S,(y,)=1-F,(y,}8))

where, y, is the survival time
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APPENDIX E. MATHEMATICA PROGRAM
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Needs["Statistics ' ContinuousDistributions'”]
Do
distl = GammaDistribution(4, 25];
dist2 = GammaDistribution([4, 25];
distlength = 750;
Rl = RandomArray[distl, distlength];
R2 = RandomArray(dist2, distlength];
xx = R1 + R2;
censortime = {150, 175, 200, 225, 250,
275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 2000};
Array[ralpal; rbetal; 1xAl; 1cAl; alpaInfo; betaInfo; meanInfo;
varianceInfo; probAl; probInfo; alpaInfonew;
meanInfonew; varianceInfonew; probInfonew, {18, 100}];

Do[c = censortime[[]]];
x1 = Select [xx, # <=c &];
cl = Select([xx, #>c&];
Lxl = Length(xl];

Lcl = Length[cl];

tl= {:ilxl[[i]]] /Lxl;

1=1

L=l
t2 = [Hxl[[i]]]*(l/hxl);

is1

r = Lxl;

n = distlength;

B=6.25;

sa := 3;

88 := 35;

If{c > 150, sa = alpal, sa=3];

logLl = ~-raLog[B] -r Log[Gamma[ a]] +
r (a-1) Log[t2] - (rtl/B) + (Lcl) Log[Gamma [a, ¢/ B] / Gamma[a]];
logLInfo = -r yLog[A] -rLog[Garma[y]] + r (¥ -1) Log[t2] -
(rtl/A) + (Lcl) Log[Gamma[ ¥y, ¢ /A] /Gamma[ y]];

Sba = -D[logLInfo, { ¥, 2}];
SDB = -D[logLInfo, {A, 2}];
PDaB = -D[logLInfo, Yy, A];

Pl = Integrate[PDF [GammaDistribution([8, p], t], {t. 0, c}]:
p2 =D([pl, 8];
p3 =D[pl, p);

alpal = a /. FindMinimum[-logLl, {a, sa},
MaxIterations - 30000, AccuracyGoal -+ 2, WorkingPrecision- 2][[2]]:
betal = 8;
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Y = alpal;

A = betal;

6 = alpal;

p = betal;

Clear([sa, 8B8];
ralpal[j, k] = alpal;
rbetal(j, k] = betal;

1xAl[Jj, k] = Lxl;
lcal(3, k] = Lel;
sa := alpal;
88 := betal;

¢ = alpal;
o = betal;
x=c/0o;

Ql = Integrate[e® t* ! Log[t], {t, x, Infinity}] // N;
Q2 = Integrate[e ™ t* ! Log[t]?, {t, x, Infinity}] // N;
Q3 = Gamma[¢, x] /Gamma[¢];

e=c® g¢-!

4z ————;
¢ Gamma [¢]
e*c? g*3
Q5 = —G-—[(;]-* (x-(¢+1));
Q6 e (Pgl+Q3)
D em—————— o * H
Gamma [¢] v

Q7 = Q4 » (Log[c] - Log{o] - Pgl);

Q8 = Integrate[e“} t* ! Log[t], {t, O, c}] !/ N;
Q9 = Integrate[e“} 1, (¢, 0, C}] // N;

Q10 = Integrate[e'% . {t, 0, c}] //N;

Qll = Integrate[e‘% t®, {t, 0, C}] //N;

Q2 . ( Pgl « Q1
Gamma [¢] Garma [¢]

Q12 =

) - (PolyGamma[l, ¢] *Q3) - (Pgl+Q6);

SDLa2UC = r « PolyGamma(l, ¢];
Q12 q6° ]

Q3 32
SDLa2 = SPLa2UC + SDLa2C1;

SDLa2Cl =z -(n-x) » [

2xtl*xr r«¢
SDLB2UC = - ( );
o o2
5 42
SDLB2C1 = - (n-1) » [3- I
Q3 Q32

SDLA2 = SDLB2UC + SDPLB2C1;
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r
PDLaBUC = —;
o]
Q7 Q6 « Q4
PDLaBCl = -(n~-x) # | =— = | =———e | |;
Q3 Q3?2

SDLaB = PDLafSUC + PDLaBSCl;

PDPa =

Gamma [¢] Gamma [¢] Gamma [¢]

et ttoi? e Tt lvglvg
PDPB = - H
Gamma [¢] Gamma [¢]

DPDPa = Integrate[PDPa, {t, 0, ¢}] // N;
DPDPB = Integrate[PDPB, (t, 0, c}] // N;

Totala = SDLa2;
TotalB = SDLA2;
TotalaB = SDLafB;

Info = {{Totala, TotalaB}, {TotalaB, Totalf}};
InfolInverse = Inverse[Info];

alpaInfo[]j, k] = InfoInverse[[1l, 1]]:;
betaInfo[j, k] = InfoInverse[[2, 2]];
alpaInfonew[]j, k] = 1/ Totala;

a={{A v}, {A*2, 27v2A}};

i11 = InfoInverse([[1, 1]];

i22 = InfoInverse[[2, 2]]:

il2 = InfoInverse([[1l, 2]];

b= {{i11, 112}, {i12, i22}};
ca = Transpose[a];

d=a.b.ca;

meanInfol[j, k] =d[[1, 1]];
varianceInfo[j, k] =d[[2, 2]];

meanInfonew([j, k] = ((0g*2) / Totala);
varianceInfonew[j, k] = ((o*4) / Totala);

vy2=p2//N;
y3=p3//N;

mi = {{DPDPa, DPDPR}};
m2 = Transpose[ml] ;
m3=mi.b.m2 //N;

probaAl([j, k] =pl;
probInfo([], k] =m3;

t t t
e Tt otrog(t] e 7T ti?o?Log[o] e 5 t1*o?pPolyGammal0, ¢]

r
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probInfonew[j, k] = ( (DPDPa) *2) / Totala;
Clear(y, A, 8, p, 8a, sf]

. {3, 1, Length[censortime]}];
Print ["End of Loop”[k]], {k, 1, 5}] // Timing
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